Copied to
clipboard

G = C12.15Dic6order 288 = 25·32

2nd non-split extension by C12 of Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial

Aliases: C12.15Dic6, C6.5(S3xC8), C32:7(C4:C8), C3:Dic3:4C8, (C3xC12).18Q8, C6.3(C8:S3), C3:1(Dic3:C8), (C3xC12).113D4, (C2xC12).298D6, C62.32(C2xC4), (C3xC6).8M4(2), C12.96(C3:D4), C6.2(Dic3:C4), C4.8(C32:2Q8), C4.18(D6:S3), (C6xC12).203C22, C2.3(C12.31D6), C2.5(C12.29D6), C2.1(C62.C22), C22.10(C6.D6), (C6xC3:C8).4C2, (C2xC4).131S32, (C2xC3:C8).10S3, (C3xC6).21(C2xC8), (C2xC6).28(C4xS3), (C3xC6).19(C4:C4), (C2xC3:Dic3).9C4, (C4xC3:Dic3).11C2, SmallGroup(288,220)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C12.15Dic6
C1C3C32C3xC6C3xC12C6xC12C6xC3:C8 — C12.15Dic6
C32C3xC6 — C12.15Dic6
C1C2xC4

Generators and relations for C12.15Dic6
 G = < a,b,c | a12=1, b12=a6, c2=a6b6, bab-1=a5, ac=ca, cbc-1=a3b11 >

Subgroups: 266 in 91 conjugacy classes, 42 normal (20 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2xC4, C2xC4, C32, Dic3, C12, C12, C2xC6, C2xC6, C42, C2xC8, C3xC6, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C4:C8, C3:Dic3, C3:Dic3, C3xC12, C62, C2xC3:C8, C4xDic3, C2xC24, C3xC3:C8, C2xC3:Dic3, C6xC12, Dic3:C8, C6xC3:C8, C4xC3:Dic3, C12.15Dic6
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, Q8, D6, C4:C4, C2xC8, M4(2), Dic6, C4xS3, C3:D4, C4:C8, S32, S3xC8, C8:S3, Dic3:C4, C6.D6, D6:S3, C32:2Q8, Dic3:C8, C12.29D6, C12.31D6, C62.C22, C12.15Dic6

Smallest permutation representation of C12.15Dic6
On 96 points
Generators in S96
(1 26 5 30 9 34 13 38 17 42 21 46)(2 35 22 31 18 27 14 47 10 43 6 39)(3 28 7 32 11 36 15 40 19 44 23 48)(4 37 24 33 20 29 16 25 12 45 8 41)(49 74 69 94 65 90 61 86 57 82 53 78)(50 91 54 95 58 75 62 79 66 83 70 87)(51 76 71 96 67 92 63 88 59 84 55 80)(52 93 56 73 60 77 64 81 68 85 72 89)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 88 19 82 13 76 7 94)(2 66 20 60 14 54 8 72)(3 74 21 92 15 86 9 80)(4 52 22 70 16 64 10 58)(5 84 23 78 17 96 11 90)(6 62 24 56 18 50 12 68)(25 81 43 75 37 93 31 87)(26 59 44 53 38 71 32 65)(27 91 45 85 39 79 33 73)(28 69 46 63 40 57 34 51)(29 77 47 95 41 89 35 83)(30 55 48 49 42 67 36 61)

G:=sub<Sym(96)| (1,26,5,30,9,34,13,38,17,42,21,46)(2,35,22,31,18,27,14,47,10,43,6,39)(3,28,7,32,11,36,15,40,19,44,23,48)(4,37,24,33,20,29,16,25,12,45,8,41)(49,74,69,94,65,90,61,86,57,82,53,78)(50,91,54,95,58,75,62,79,66,83,70,87)(51,76,71,96,67,92,63,88,59,84,55,80)(52,93,56,73,60,77,64,81,68,85,72,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,88,19,82,13,76,7,94)(2,66,20,60,14,54,8,72)(3,74,21,92,15,86,9,80)(4,52,22,70,16,64,10,58)(5,84,23,78,17,96,11,90)(6,62,24,56,18,50,12,68)(25,81,43,75,37,93,31,87)(26,59,44,53,38,71,32,65)(27,91,45,85,39,79,33,73)(28,69,46,63,40,57,34,51)(29,77,47,95,41,89,35,83)(30,55,48,49,42,67,36,61)>;

G:=Group( (1,26,5,30,9,34,13,38,17,42,21,46)(2,35,22,31,18,27,14,47,10,43,6,39)(3,28,7,32,11,36,15,40,19,44,23,48)(4,37,24,33,20,29,16,25,12,45,8,41)(49,74,69,94,65,90,61,86,57,82,53,78)(50,91,54,95,58,75,62,79,66,83,70,87)(51,76,71,96,67,92,63,88,59,84,55,80)(52,93,56,73,60,77,64,81,68,85,72,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,88,19,82,13,76,7,94)(2,66,20,60,14,54,8,72)(3,74,21,92,15,86,9,80)(4,52,22,70,16,64,10,58)(5,84,23,78,17,96,11,90)(6,62,24,56,18,50,12,68)(25,81,43,75,37,93,31,87)(26,59,44,53,38,71,32,65)(27,91,45,85,39,79,33,73)(28,69,46,63,40,57,34,51)(29,77,47,95,41,89,35,83)(30,55,48,49,42,67,36,61) );

G=PermutationGroup([[(1,26,5,30,9,34,13,38,17,42,21,46),(2,35,22,31,18,27,14,47,10,43,6,39),(3,28,7,32,11,36,15,40,19,44,23,48),(4,37,24,33,20,29,16,25,12,45,8,41),(49,74,69,94,65,90,61,86,57,82,53,78),(50,91,54,95,58,75,62,79,66,83,70,87),(51,76,71,96,67,92,63,88,59,84,55,80),(52,93,56,73,60,77,64,81,68,85,72,89)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,88,19,82,13,76,7,94),(2,66,20,60,14,54,8,72),(3,74,21,92,15,86,9,80),(4,52,22,70,16,64,10,58),(5,84,23,78,17,96,11,90),(6,62,24,56,18,50,12,68),(25,81,43,75,37,93,31,87),(26,59,44,53,38,71,32,65),(27,91,45,85,39,79,33,73),(28,69,46,63,40,57,34,51),(29,77,47,95,41,89,35,83),(30,55,48,49,42,67,36,61)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I8A···8H12A···12H12I12J12K12L24A···24P
order1222333444444446···66668···812···121212121224···24
size11112241111181818182···24446···62···244446···6

60 irreducible representations

dim111112222222222444444
type+++++-+-+--+
imageC1C2C2C4C8S3D4Q8D6M4(2)Dic6C3:D4C4xS3S3xC8C8:S3S32D6:S3C32:2Q8C6.D6C12.29D6C12.31D6
kernelC12.15Dic6C6xC3:C8C4xC3:Dic3C2xC3:Dic3C3:Dic3C2xC3:C8C3xC12C3xC12C2xC12C3xC6C12C12C2xC6C6C6C2xC4C4C4C22C2C2
# reps121482112244488111122

Matrix representation of C12.15Dic6 in GL6(F73)

100000
010000
0046000
0004600
0000072
0000172
,
010000
7200000
0002200
00512200
000001
000010
,
23280000
28500000
0005100
0051000
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,51,0,0,0,0,22,22,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[23,28,0,0,0,0,28,50,0,0,0,0,0,0,0,51,0,0,0,0,51,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C12.15Dic6 in GAP, Magma, Sage, TeX

C_{12}._{15}{\rm Dic}_6
% in TeX

G:=Group("C12.15Dic6");
// GroupNames label

G:=SmallGroup(288,220);
// by ID

G=gap.SmallGroup(288,220);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,36,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^12=a^6,c^2=a^6*b^6,b*a*b^-1=a^5,a*c=c*a,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<