Copied to
clipboard

G = D12:3Dic3order 288 = 25·32

3rd semidirect product of D12 and Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial

Aliases: D12:3Dic3, C12.15D12, C62.17D4, (C3xD12):1C4, (C3xC6).13D8, C12.13(C4xS3), C4:Dic3:10S3, (C6xD12).2C2, (C2xD12).6S3, (C2xC12).75D6, (C3xC12).32D4, (C3xC6).7SD16, C4.6(S3xDic3), C6.34(D6:C4), C6.11(D4:S3), C3:3(C6.D8), C6.4(D4.S3), C12.7(C2xDic3), C3:2(D4:Dic3), C12.28(C3:D4), C32:4(D4:C4), C2.5(D6:Dic3), (C6xC12).24C22, C6.4(Q8:2S3), C2.1(C32:2D8), C4.21(C3:D12), C6.4(C6.D4), C2.1(Dic6:S3), C22.7(D6:S3), (C2xC4).99S32, (C3xC4:Dic3):1C2, (C3xC12).22(C2xC4), (C2xC32:4C8):1C2, (C2xC6).48(C3:D4), (C3xC6).29(C22:C4), SmallGroup(288,210)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D12:3Dic3
C1C3C32C3xC6C62C6xC12C6xD12 — D12:3Dic3
C32C3xC6C3xC12 — D12:3Dic3
C1C22C2xC4

Generators and relations for D12:3Dic3
 G = < a,b,c,d | a12=b2=c6=1, d2=c3, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 402 in 111 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C4:C4, C2xC8, C2xD4, C3xS3, C3xC6, C3:C8, D12, D12, C2xDic3, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, D4:C4, C3xDic3, C3xC12, S3xC6, C62, C2xC3:C8, C4:Dic3, C3xC4:C4, C2xD12, C6xD4, C32:4C8, C3xD12, C3xD12, C6xDic3, C6xC12, S3xC2xC6, C6.D8, D4:Dic3, C3xC4:Dic3, C2xC32:4C8, C6xD12, D12:3Dic3
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Dic3, D6, C22:C4, D8, SD16, C4xS3, D12, C2xDic3, C3:D4, D4:C4, S32, D6:C4, D4:S3, D4.S3, Q8:2S3, C6.D4, S3xDic3, D6:S3, C3:D12, C6.D8, D4:Dic3, C32:2D8, Dic6:S3, D6:Dic3, D12:3Dic3

Smallest permutation representation of D12:3Dic3
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 67)(2 66)(3 65)(4 64)(5 63)(6 62)(7 61)(8 72)(9 71)(10 70)(11 69)(12 68)(13 58)(14 57)(15 56)(16 55)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 60)(24 59)(25 88)(26 87)(27 86)(28 85)(29 96)(30 95)(31 94)(32 93)(33 92)(34 91)(35 90)(36 89)(37 83)(38 82)(39 81)(40 80)(41 79)(42 78)(43 77)(44 76)(45 75)(46 74)(47 73)(48 84)
(1 17 9 13 5 21)(2 18 10 14 6 22)(3 19 11 15 7 23)(4 20 12 16 8 24)(25 45 29 37 33 41)(26 46 30 38 34 42)(27 47 31 39 35 43)(28 48 32 40 36 44)(49 66 53 70 57 62)(50 67 54 71 58 63)(51 68 55 72 59 64)(52 69 56 61 60 65)(73 94 81 90 77 86)(74 95 82 91 78 87)(75 96 83 92 79 88)(76 85 84 93 80 89)
(1 43 13 31)(2 38 14 26)(3 45 15 33)(4 40 16 28)(5 47 17 35)(6 42 18 30)(7 37 19 25)(8 44 20 32)(9 39 21 27)(10 46 22 34)(11 41 23 29)(12 48 24 36)(49 88 70 83)(50 95 71 78)(51 90 72 73)(52 85 61 80)(53 92 62 75)(54 87 63 82)(55 94 64 77)(56 89 65 84)(57 96 66 79)(58 91 67 74)(59 86 68 81)(60 93 69 76)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,72)(9,71)(10,70)(11,69)(12,68)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,60)(24,59)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,84), (1,17,9,13,5,21)(2,18,10,14,6,22)(3,19,11,15,7,23)(4,20,12,16,8,24)(25,45,29,37,33,41)(26,46,30,38,34,42)(27,47,31,39,35,43)(28,48,32,40,36,44)(49,66,53,70,57,62)(50,67,54,71,58,63)(51,68,55,72,59,64)(52,69,56,61,60,65)(73,94,81,90,77,86)(74,95,82,91,78,87)(75,96,83,92,79,88)(76,85,84,93,80,89), (1,43,13,31)(2,38,14,26)(3,45,15,33)(4,40,16,28)(5,47,17,35)(6,42,18,30)(7,37,19,25)(8,44,20,32)(9,39,21,27)(10,46,22,34)(11,41,23,29)(12,48,24,36)(49,88,70,83)(50,95,71,78)(51,90,72,73)(52,85,61,80)(53,92,62,75)(54,87,63,82)(55,94,64,77)(56,89,65,84)(57,96,66,79)(58,91,67,74)(59,86,68,81)(60,93,69,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,72)(9,71)(10,70)(11,69)(12,68)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,60)(24,59)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,84), (1,17,9,13,5,21)(2,18,10,14,6,22)(3,19,11,15,7,23)(4,20,12,16,8,24)(25,45,29,37,33,41)(26,46,30,38,34,42)(27,47,31,39,35,43)(28,48,32,40,36,44)(49,66,53,70,57,62)(50,67,54,71,58,63)(51,68,55,72,59,64)(52,69,56,61,60,65)(73,94,81,90,77,86)(74,95,82,91,78,87)(75,96,83,92,79,88)(76,85,84,93,80,89), (1,43,13,31)(2,38,14,26)(3,45,15,33)(4,40,16,28)(5,47,17,35)(6,42,18,30)(7,37,19,25)(8,44,20,32)(9,39,21,27)(10,46,22,34)(11,41,23,29)(12,48,24,36)(49,88,70,83)(50,95,71,78)(51,90,72,73)(52,85,61,80)(53,92,62,75)(54,87,63,82)(55,94,64,77)(56,89,65,84)(57,96,66,79)(58,91,67,74)(59,86,68,81)(60,93,69,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,67),(2,66),(3,65),(4,64),(5,63),(6,62),(7,61),(8,72),(9,71),(10,70),(11,69),(12,68),(13,58),(14,57),(15,56),(16,55),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,60),(24,59),(25,88),(26,87),(27,86),(28,85),(29,96),(30,95),(31,94),(32,93),(33,92),(34,91),(35,90),(36,89),(37,83),(38,82),(39,81),(40,80),(41,79),(42,78),(43,77),(44,76),(45,75),(46,74),(47,73),(48,84)], [(1,17,9,13,5,21),(2,18,10,14,6,22),(3,19,11,15,7,23),(4,20,12,16,8,24),(25,45,29,37,33,41),(26,46,30,38,34,42),(27,47,31,39,35,43),(28,48,32,40,36,44),(49,66,53,70,57,62),(50,67,54,71,58,63),(51,68,55,72,59,64),(52,69,56,61,60,65),(73,94,81,90,77,86),(74,95,82,91,78,87),(75,96,83,92,79,88),(76,85,84,93,80,89)], [(1,43,13,31),(2,38,14,26),(3,45,15,33),(4,40,16,28),(5,47,17,35),(6,42,18,30),(7,37,19,25),(8,44,20,32),(9,39,21,27),(10,46,22,34),(11,41,23,29),(12,48,24,36),(49,88,70,83),(50,95,71,78),(51,90,72,73),(52,85,61,80),(53,92,62,75),(54,87,63,82),(55,94,64,77),(56,89,65,84),(57,96,66,79),(58,91,67,74),(59,86,68,81),(60,93,69,76)]])

42 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D6A···6F6G6H6I6J6K6L6M8A8B8C8D12A···12H12I12J12K12L
order12222233344446···66666666888812···1212121212
size111112122242212122···244412121212181818184···412121212

42 irreducible representations

dim11111222222222222444444444
type++++++++-+++++-+-+-
imageC1C2C2C2C4S3S3D4D4Dic3D6D8SD16C4xS3D12C3:D4C3:D4S32D4:S3D4.S3Q8:2S3S3xDic3C3:D12D6:S3C32:2D8Dic6:S3
kernelD12:3Dic3C3xC4:Dic3C2xC32:4C8C6xD12C3xD12C4:Dic3C2xD12C3xC12C62D12C2xC12C3xC6C3xC6C12C12C12C2xC6C2xC4C6C6C6C4C4C22C2C2
# reps11114111122222224121111122

Matrix representation of D12:3Dic3 in GL6(F73)

2700000
71460000
001000
000100
0000172
000010
,
3840000
59350000
0072000
0007200
00005448
00002919
,
7200000
0720000
001100
0072000
000010
000001
,
40580000
24330000
0046000
00272700
00003013
00006043

G:=sub<GL(6,GF(73))| [27,71,0,0,0,0,0,46,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,72,0],[38,59,0,0,0,0,4,35,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,54,29,0,0,0,0,48,19],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,24,0,0,0,0,58,33,0,0,0,0,0,0,46,27,0,0,0,0,0,27,0,0,0,0,0,0,30,60,0,0,0,0,13,43] >;

D12:3Dic3 in GAP, Magma, Sage, TeX

D_{12}\rtimes_3{\rm Dic}_3
% in TeX

G:=Group("D12:3Dic3");
// GroupNames label

G:=SmallGroup(288,210);
// by ID

G=gap.SmallGroup(288,210);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,675,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<