Copied to
clipboard

G = GL2(F3):S3order 288 = 25·32

1st semidirect product of GL2(F3) and S3 acting via S3/C3=C2

non-abelian, soluble

Aliases: Dic3.2S4, GL2(F3):1S3, SL2(F3):1D6, Q8.4S32, C2.7(S3xS4), C6.4(C2xS4), (C3xQ8).4D6, C6.6S4:2C2, Q8:3S3:3S3, C3:1(C4.3S4), Dic3.A4:3C2, (C3xGL2(F3)):1C2, (C3xSL2(F3)):1C22, SmallGroup(288,847)

Series: Derived Chief Lower central Upper central

C1C2Q8C3xSL2(F3) — GL2(F3):S3
C1C2Q8C3xQ8C3xSL2(F3)Dic3.A4 — GL2(F3):S3
C3xSL2(F3) — GL2(F3):S3
C1C2

Generators and relations for GL2(F3):S3
 G = < a,b,c,d,e | a4=c3=d6=e2=1, b2=a2, bab-1=dbd-1=a-1, cac-1=eae=b, dad-1=a2b, cbc-1=ab, ebe=a, dcd-1=c-1, ece=ac-1, ede=d-1 >

Subgroups: 678 in 91 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2xC4, D4, Q8, C23, C32, Dic3, C12, D6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C3xS3, C3:S3, C3xC6, C3:C8, C24, SL2(F3), SL2(F3), C4xS3, D12, C3:D4, C3xD4, C3xQ8, C22xS3, C8:C22, C3xDic3, S3xC6, C2xC3:S3, C8:S3, D24, D4:S3, Q8:2S3, C3xSD16, GL2(F3), GL2(F3), C4.A4, S3xD4, Q8:3S3, C3:D12, C3xSL2(F3), Q8:3D6, C4.3S4, C3xGL2(F3), C6.6S4, Dic3.A4, GL2(F3):S3
Quotients: C1, C2, C22, S3, D6, S4, S32, C2xS4, C4.3S4, S3xS4, GL2(F3):S3

Character table of GL2(F3):S3

 class 12A2B2C2D3A3B3C4A4B6A6B6C6D8A8B12A12B12C24A24B
 size 1112183628166628162412361224241212
ρ1111111111111111111111    trivial
ρ211-11-111111111-1-1-1111-1-1    linear of order 2
ρ311-1-111111-1111-1-111-1-1-1-1    linear of order 2
ρ4111-1-11111-111111-11-1-111    linear of order 2
ρ5220-202-1-12-22-1-100021100    orthogonal lifted from D6
ρ622200-12-120-12-1-120-100-1-1    orthogonal lifted from S3
ρ7220202-1-1222-1-10002-1-100    orthogonal lifted from S3
ρ822-200-12-120-12-11-20-10011    orthogonal lifted from D6
ρ933-111300-1-3300-11-1-10011    orthogonal lifted from C2xS4
ρ1033-1-1-1300-13300-111-10011    orthogonal lifted from S4
ρ113311-1300-1-33001-11-100-1-1    orthogonal lifted from C2xS4
ρ12331-11300-133001-1-1-100-1-1    orthogonal lifted from S4
ρ1344000-2-2140-2-21000-20000    orthogonal lifted from S32
ρ144-40004-2-200-42200000000    orthogonal lifted from C4.3S4
ρ154-400041100-4-1-10000-3300    orthogonal lifted from C4.3S4
ρ164-400041100-4-1-100003-300    orthogonal lifted from C4.3S4
ρ174-4000-2-210022-1000000-66    orthogonal faithful
ρ184-4000-2-210022-10000006-6    orthogonal faithful
ρ1966200-300-20-300-1-2010011    orthogonal lifted from S3xS4
ρ2066-200-300-20-300120100-1-1    orthogonal lifted from S3xS4
ρ218-8000-42-1004-2100000000    orthogonal faithful

Smallest permutation representation of GL2(F3):S3
On 48 points
Generators in S48
(1 16 26 21)(2 7 27 44)(3 18 28 23)(4 9 29 46)(5 14 30 19)(6 11 25 48)(8 36 45 42)(10 32 47 38)(12 34 43 40)(13 37 24 31)(15 39 20 33)(17 41 22 35)
(1 43 26 12)(2 22 27 17)(3 45 28 8)(4 24 29 13)(5 47 30 10)(6 20 25 15)(7 41 44 35)(9 37 46 31)(11 39 48 33)(14 32 19 38)(16 34 21 40)(18 36 23 42)
(1 5 3)(2 4 6)(7 37 20)(8 21 38)(9 39 22)(10 23 40)(11 41 24)(12 19 42)(13 48 35)(14 36 43)(15 44 31)(16 32 45)(17 46 33)(18 34 47)(25 27 29)(26 30 28)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 44)(8 43)(9 48)(10 47)(11 46)(12 45)(13 15)(16 18)(20 24)(21 23)(25 31)(26 36)(27 35)(28 34)(29 33)(30 32)

G:=sub<Sym(48)| (1,16,26,21)(2,7,27,44)(3,18,28,23)(4,9,29,46)(5,14,30,19)(6,11,25,48)(8,36,45,42)(10,32,47,38)(12,34,43,40)(13,37,24,31)(15,39,20,33)(17,41,22,35), (1,43,26,12)(2,22,27,17)(3,45,28,8)(4,24,29,13)(5,47,30,10)(6,20,25,15)(7,41,44,35)(9,37,46,31)(11,39,48,33)(14,32,19,38)(16,34,21,40)(18,36,23,42), (1,5,3)(2,4,6)(7,37,20)(8,21,38)(9,39,22)(10,23,40)(11,41,24)(12,19,42)(13,48,35)(14,36,43)(15,44,31)(16,32,45)(17,46,33)(18,34,47)(25,27,29)(26,30,28), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,15)(16,18)(20,24)(21,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)>;

G:=Group( (1,16,26,21)(2,7,27,44)(3,18,28,23)(4,9,29,46)(5,14,30,19)(6,11,25,48)(8,36,45,42)(10,32,47,38)(12,34,43,40)(13,37,24,31)(15,39,20,33)(17,41,22,35), (1,43,26,12)(2,22,27,17)(3,45,28,8)(4,24,29,13)(5,47,30,10)(6,20,25,15)(7,41,44,35)(9,37,46,31)(11,39,48,33)(14,32,19,38)(16,34,21,40)(18,36,23,42), (1,5,3)(2,4,6)(7,37,20)(8,21,38)(9,39,22)(10,23,40)(11,41,24)(12,19,42)(13,48,35)(14,36,43)(15,44,31)(16,32,45)(17,46,33)(18,34,47)(25,27,29)(26,30,28), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,15)(16,18)(20,24)(21,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32) );

G=PermutationGroup([[(1,16,26,21),(2,7,27,44),(3,18,28,23),(4,9,29,46),(5,14,30,19),(6,11,25,48),(8,36,45,42),(10,32,47,38),(12,34,43,40),(13,37,24,31),(15,39,20,33),(17,41,22,35)], [(1,43,26,12),(2,22,27,17),(3,45,28,8),(4,24,29,13),(5,47,30,10),(6,20,25,15),(7,41,44,35),(9,37,46,31),(11,39,48,33),(14,32,19,38),(16,34,21,40),(18,36,23,42)], [(1,5,3),(2,4,6),(7,37,20),(8,21,38),(9,39,22),(10,23,40),(11,41,24),(12,19,42),(13,48,35),(14,36,43),(15,44,31),(16,32,45),(17,46,33),(18,34,47),(25,27,29),(26,30,28)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,44),(8,43),(9,48),(10,47),(11,46),(12,45),(13,15),(16,18),(20,24),(21,23),(25,31),(26,36),(27,35),(28,34),(29,33),(30,32)]])

Matrix representation of GL2(F3):S3 in GL4(F5) generated by

3031
1422
3322
1101
,
2202
4341
1333
1012
,
2412
1144
4022
0223
,
1242
0403
3203
2310
,
0114
0030
0200
4230
G:=sub<GL(4,GF(5))| [3,1,3,1,0,4,3,1,3,2,2,0,1,2,2,1],[2,4,1,1,2,3,3,0,0,4,3,1,2,1,3,2],[2,1,4,0,4,1,0,2,1,4,2,2,2,4,2,3],[1,0,3,2,2,4,2,3,4,0,0,1,2,3,3,0],[0,0,0,4,1,0,2,2,1,3,0,3,4,0,0,0] >;

GL2(F3):S3 in GAP, Magma, Sage, TeX

{\rm GL}_2({\mathbb F}_3)\rtimes S_3
% in TeX

G:=Group("GL(2,3):S3");
// GroupNames label

G:=SmallGroup(288,847);
// by ID

G=gap.SmallGroup(288,847);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,2045,93,675,1271,1908,172,768,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^6=e^2=1,b^2=a^2,b*a*b^-1=d*b*d^-1=a^-1,c*a*c^-1=e*a*e=b,d*a*d^-1=a^2*b,c*b*c^-1=a*b,e*b*e=a,d*c*d^-1=c^-1,e*c*e=a*c^-1,e*d*e=d^-1>;
// generators/relations

Export

Character table of GL2(F3):S3 in TeX

׿
x
:
Z
F
o
wr
Q
<