Extensions 1→N→G→Q→1 with N=C3xA4 and Q=C2xC4

Direct product G=NxQ with N=C3xA4 and Q=C2xC4
dρLabelID
A4xC2xC1272A4xC2xC12288,979

Semidirect products G=N:Q with N=C3xA4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xA4):1(C2xC4) = Dic3xS4φ: C2xC4/C2C22 ⊆ Out C3xA4366-(C3xA4):1(C2xC4)288,853
(C3xA4):2(C2xC4) = Dic3:2S4φ: C2xC4/C2C22 ⊆ Out C3xA4366(C3xA4):2(C2xC4)288,854
(C3xA4):3(C2xC4) = S3xA4:C4φ: C2xC4/C2C22 ⊆ Out C3xA4366(C3xA4):3(C2xC4)288,856
(C3xA4):4(C2xC4) = C12xS4φ: C2xC4/C4C2 ⊆ Out C3xA4363(C3xA4):4(C2xC4)288,897
(C3xA4):5(C2xC4) = C4xC3:S4φ: C2xC4/C4C2 ⊆ Out C3xA4366(C3xA4):5(C2xC4)288,908
(C3xA4):6(C2xC4) = C4xS3xA4φ: C2xC4/C4C2 ⊆ Out C3xA4366(C3xA4):6(C2xC4)288,919
(C3xA4):7(C2xC4) = C6xA4:C4φ: C2xC4/C22C2 ⊆ Out C3xA472(C3xA4):7(C2xC4)288,905
(C3xA4):8(C2xC4) = C2xC6.7S4φ: C2xC4/C22C2 ⊆ Out C3xA472(C3xA4):8(C2xC4)288,916
(C3xA4):9(C2xC4) = C2xDic3xA4φ: C2xC4/C22C2 ⊆ Out C3xA472(C3xA4):9(C2xC4)288,927


׿
x
:
Z
F
o
wr
Q
<