Copied to
clipboard

G = C4xS3xA4order 288 = 25·32

Direct product of C4, S3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C4xS3xA4, C12:2(C2xA4), (C12xA4):6C2, D6.3(C2xA4), (S3xC23).C6, C22:2(S3xC12), (C22xC12):2C6, (Dic3xA4):5C2, Dic3:2(C2xA4), (C2xA4).14D6, C6.2(C22xA4), (C22xS3):2C12, C23.17(S3xC6), (C6xA4).19C22, (C22xDic3):2C6, C3:1(C2xC4xA4), (S3xC22xC4):C3, C2.1(C2xS3xA4), (C2xS3xA4).2C2, (C3xA4):6(C2xC4), (C2xC6):1(C2xC12), (C22xC4):4(C3xS3), (C22xC6).2(C2xC6), SmallGroup(288,919)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C4xS3xA4
C1C3C2xC6C22xC6C6xA4C2xS3xA4 — C4xS3xA4
C2xC6 — C4xS3xA4
C1C4

Generators and relations for C4xS3xA4
 G = < a,b,c,d,e,f | a4=b3=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 578 in 138 conjugacy classes, 33 normal (27 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2xC4, C23, C23, C32, Dic3, Dic3, C12, C12, A4, A4, D6, D6, C2xC6, C2xC6, C22xC4, C22xC4, C24, C3xS3, C3xC6, C4xS3, C4xS3, C2xDic3, C2xC12, C2xA4, C2xA4, C22xS3, C22xS3, C22xC6, C23xC4, C3xDic3, C3xC12, C3xA4, S3xC6, C4xA4, C4xA4, S3xC2xC4, C22xDic3, C22xC12, C22xA4, S3xC23, S3xC12, S3xA4, C6xA4, C2xC4xA4, S3xC22xC4, Dic3xA4, C12xA4, C2xS3xA4, C4xS3xA4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, C12, A4, D6, C2xC6, C3xS3, C4xS3, C2xC12, C2xA4, S3xC6, C4xA4, C22xA4, S3xC12, S3xA4, C2xC4xA4, C2xS3xA4, C4xS3xA4

Smallest permutation representation of C4xS3xA4
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 29 14)(2 30 15)(3 31 16)(4 32 13)(5 10 33)(6 11 34)(7 12 35)(8 9 36)(17 22 27)(18 23 28)(19 24 25)(20 21 26)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 30)(14 31)(15 32)(16 29)(17 24)(18 21)(19 22)(20 23)(25 27)(26 28)(33 35)(34 36)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(29 31)(30 32)(33 35)(34 36)
(1 3)(2 4)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 26 35)(2 27 36)(3 28 33)(4 25 34)(5 31 18)(6 32 19)(7 29 20)(8 30 17)(9 15 22)(10 16 23)(11 13 24)(12 14 21)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,22,27)(18,23,28)(19,24,25)(20,21,26), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,30)(14,31)(15,32)(16,29)(17,24)(18,21)(19,22)(20,23)(25,27)(26,28)(33,35)(34,36), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(29,31)(30,32)(33,35)(34,36), (1,3)(2,4)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,18)(6,32,19)(7,29,20)(8,30,17)(9,15,22)(10,16,23)(11,13,24)(12,14,21)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,22,27)(18,23,28)(19,24,25)(20,21,26), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,30)(14,31)(15,32)(16,29)(17,24)(18,21)(19,22)(20,23)(25,27)(26,28)(33,35)(34,36), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(29,31)(30,32)(33,35)(34,36), (1,3)(2,4)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,18)(6,32,19)(7,29,20)(8,30,17)(9,15,22)(10,16,23)(11,13,24)(12,14,21) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,29,14),(2,30,15),(3,31,16),(4,32,13),(5,10,33),(6,11,34),(7,12,35),(8,9,36),(17,22,27),(18,23,28),(19,24,25),(20,21,26)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,30),(14,31),(15,32),(16,29),(17,24),(18,21),(19,22),(20,23),(25,27),(26,28),(33,35),(34,36)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(29,31),(30,32),(33,35),(34,36)], [(1,3),(2,4),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,26,35),(2,27,36),(3,28,33),(4,25,34),(5,31,18),(6,32,19),(7,29,20),(8,30,17),(9,15,22),(10,16,23),(11,13,24),(12,14,21)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F4G4H6A6B6C6D6E6F6G6H6I6J6K12A12B12C12D12E12F12G12H12I12J12K12L12M12N12O12P
order1222222233333444444446666666666612121212121212121212121212121212
size11333399244881133339924466881212121222444466888812121212

48 irreducible representations

dim111111111122222233333666
type++++++++++++
imageC1C2C2C2C3C4C6C6C6C12S3D6C3xS3C4xS3S3xC6S3xC12A4C2xA4C2xA4C2xA4C4xA4S3xA4C2xS3xA4C4xS3xA4
kernelC4xS3xA4Dic3xA4C12xA4C2xS3xA4S3xC22xC4S3xA4C22xDic3C22xC12S3xC23C22xS3C4xA4C2xA4C22xC4A4C23C22C4xS3Dic3C12D6S3C4C2C1
# reps111124222811222411114112

Matrix representation of C4xS3xA4 in GL5(F13)

50000
05000
00100
00010
00001
,
1212000
10000
00100
00010
00001
,
01000
10000
001200
000120
000012
,
10000
01000
00100
0010120
009012
,
10000
01000
001200
00310
000012
,
30000
03000
00308
00001
000410

G:=sub<GL(5,GF(13))| [5,0,0,0,0,0,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,1,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,10,9,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,3,0,0,0,0,1,0,0,0,0,0,12],[3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,8,1,10] >;

C4xS3xA4 in GAP, Magma, Sage, TeX

C_4\times S_3\times A_4
% in TeX

G:=Group("C4xS3xA4");
// GroupNames label

G:=SmallGroup(288,919);
// by ID

G=gap.SmallGroup(288,919);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-3,92,648,271,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^3=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<