Extensions 1→N→G→Q→1 with N=C3 and Q=S3xC4oD4

Direct product G=NxQ with N=C3 and Q=S3xC4oD4
dρLabelID
C3xS3xC4oD4484C3xS3xC4oD4288,998

Semidirect products G=N:Q with N=C3 and Q=S3xC4oD4
extensionφ:Q→Aut NdρLabelID
C3:1(S3xC4oD4) = S3xC4oD12φ: S3xC4oD4/S3xC2xC4C2 ⊆ Aut C3484C3:1(S3xC4oD4)288,953
C3:2(S3xC4oD4) = D12:23D6φ: S3xC4oD4/C4oD12C2 ⊆ Aut C3244C3:2(S3xC4oD4)288,954
C3:3(S3xC4oD4) = S3xD4:2S3φ: S3xC4oD4/S3xD4C2 ⊆ Aut C3488-C3:3(S3xC4oD4)288,959
C3:4(S3xC4oD4) = Dic6:12D6φ: S3xC4oD4/D4:2S3C2 ⊆ Aut C3248+C3:4(S3xC4oD4)288,960
C3:5(S3xC4oD4) = S3xQ8:3S3φ: S3xC4oD4/S3xQ8C2 ⊆ Aut C3488+C3:5(S3xC4oD4)288,966
C3:6(S3xC4oD4) = D12:15D6φ: S3xC4oD4/Q8:3S3C2 ⊆ Aut C3488-C3:6(S3xC4oD4)288,967
C3:7(S3xC4oD4) = C4oD4xC3:S3φ: S3xC4oD4/C3xC4oD4C2 ⊆ Aut C372C3:7(S3xC4oD4)288,1013

Non-split extensions G=N.Q with N=C3 and Q=S3xC4oD4
extensionφ:Q→Aut NdρLabelID
C3.(S3xC4oD4) = C4oD4xD9φ: S3xC4oD4/C3xC4oD4C2 ⊆ Aut C3724C3.(S3xC4oD4)288,362

׿
x
:
Z
F
o
wr
Q
<