extension | φ:Q→Aut N | d | ρ | Label | ID |
C3:1(S3xC4oD4) = S3xC4oD12 | φ: S3xC4oD4/S3xC2xC4 → C2 ⊆ Aut C3 | 48 | 4 | C3:1(S3xC4oD4) | 288,953 |
C3:2(S3xC4oD4) = D12:23D6 | φ: S3xC4oD4/C4oD12 → C2 ⊆ Aut C3 | 24 | 4 | C3:2(S3xC4oD4) | 288,954 |
C3:3(S3xC4oD4) = S3xD4:2S3 | φ: S3xC4oD4/S3xD4 → C2 ⊆ Aut C3 | 48 | 8- | C3:3(S3xC4oD4) | 288,959 |
C3:4(S3xC4oD4) = Dic6:12D6 | φ: S3xC4oD4/D4:2S3 → C2 ⊆ Aut C3 | 24 | 8+ | C3:4(S3xC4oD4) | 288,960 |
C3:5(S3xC4oD4) = S3xQ8:3S3 | φ: S3xC4oD4/S3xQ8 → C2 ⊆ Aut C3 | 48 | 8+ | C3:5(S3xC4oD4) | 288,966 |
C3:6(S3xC4oD4) = D12:15D6 | φ: S3xC4oD4/Q8:3S3 → C2 ⊆ Aut C3 | 48 | 8- | C3:6(S3xC4oD4) | 288,967 |
C3:7(S3xC4oD4) = C4oD4xC3:S3 | φ: S3xC4oD4/C3xC4oD4 → C2 ⊆ Aut C3 | 72 | | C3:7(S3xC4oD4) | 288,1013 |