Extensions 1→N→G→Q→1 with N=C2xS3xDic3 and Q=C2

Direct product G=NxQ with N=C2xS3xDic3 and Q=C2
dρLabelID
C22xS3xDic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=C2xS3xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xDic3):1C2 = Dic3:D12φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):1C2288,534
(C2xS3xDic3):2C2 = C62.112C23φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):2C2288,618
(C2xS3xDic3):3C2 = C2xD12:S3φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):3C2288,944
(C2xS3xDic3):4C2 = S3xD4:2S3φ: C2/C1C2 ⊆ Out C2xS3xDic3488-(C2xS3xDic3):4C2288,959
(C2xS3xDic3):5C2 = C2xD6.4D6φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):5C2288,971
(C2xS3xDic3):6C2 = C2xS3xC3:D4φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):6C2288,976
(C2xS3xDic3):7C2 = C62.49C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):7C2288,527
(C2xS3xDic3):8C2 = Dic3:4D12φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):8C2288,528
(C2xS3xDic3):9C2 = C62.51C23φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):9C2288,529
(C2xS3xDic3):10C2 = C62.54C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):10C2288,532
(C2xS3xDic3):11C2 = C62.55C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):11C2288,533
(C2xS3xDic3):12C2 = D6.D12φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):12C2288,538
(C2xS3xDic3):13C2 = D6.9D12φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):13C2288,539
(C2xS3xDic3):14C2 = Dic3xD12φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):14C2288,540
(C2xS3xDic3):15C2 = D12:Dic3φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):15C2288,546
(C2xS3xDic3):16C2 = C62.72C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):16C2288,550
(C2xS3xDic3):17C2 = S3xD6:C4φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):17C2288,568
(C2xS3xDic3):18C2 = S3xC6.D4φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):18C2288,616
(C2xS3xDic3):19C2 = C62.111C23φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):19C2288,617
(C2xS3xDic3):20C2 = C62.113C23φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):20C2288,619
(C2xS3xDic3):21C2 = Dic3xC3:D4φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):21C2288,620
(C2xS3xDic3):22C2 = C62.115C23φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):22C2288,621
(C2xS3xDic3):23C2 = C2xD12:5S3φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3):23C2288,943
(C2xS3xDic3):24C2 = C2xD6.3D6φ: C2/C1C2 ⊆ Out C2xS3xDic348(C2xS3xDic3):24C2288,970
(C2xS3xDic3):25C2 = S32xC2xC4φ: trivial image48(C2xS3xDic3):25C2288,950

Non-split extensions G=N.Q with N=C2xS3xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xDic3).1C2 = C62.48C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).1C2288,526
(C2xS3xDic3).2C2 = D6:1Dic6φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).2C2288,535
(C2xS3xDic3).3C2 = D6:2Dic6φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).3C2288,541
(C2xS3xDic3).4C2 = C2xS3xDic6φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).4C2288,942
(C2xS3xDic3).5C2 = S3xDic3:C4φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).5C2288,524
(C2xS3xDic3).6C2 = C62.47C23φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).6C2288,525
(C2xS3xDic3).7C2 = S3xC4:Dic3φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).7C2288,537
(C2xS3xDic3).8C2 = D6:3Dic6φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).8C2288,544
(C2xS3xDic3).9C2 = D6:4Dic6φ: C2/C1C2 ⊆ Out C2xS3xDic396(C2xS3xDic3).9C2288,547
(C2xS3xDic3).10C2 = C4xS3xDic3φ: trivial image96(C2xS3xDic3).10C2288,523

׿
x
:
Z
F
o
wr
Q
<