Copied to
clipboard

G = D6.D12order 288 = 25·32

5th non-split extension by D6 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: D6.8D12, C62.60C23, D6:C4:16S3, C4:Dic3:6S3, (S3xC6).6D4, C6.14(S3xD4), C6.15(C2xD12), C2.18(S3xD12), (C2xC12).228D6, Dic3:Dic3:5C2, C6.54(C4oD12), C3:4(D6.D4), C6.D12:7C2, (C2xDic3).24D6, (C22xS3).37D6, C6.11D12:10C2, C6.41(D4:2S3), (C6xC12).184C22, C6.34(Q8:3S3), C2.17(D12:S3), C2.17(D6.3D6), C3:1(C23.21D6), (C6xDic3).13C22, C32:6(C22.D4), (C2xC4).25S32, (C3xD6:C4):14C2, (C2xS3xDic3):12C2, (C3xC6).47(C2xD4), (C3xC4:Dic3):12C2, C22.106(C2xS32), (S3xC2xC6).19C22, (C2xC3:D12).6C2, (C3xC6).36(C4oD4), (C2xC6).79(C22xS3), (C22xC3:S3).16C22, (C2xC3:Dic3).44C22, SmallGroup(288,538)

Series: Derived Chief Lower central Upper central

C1C62 — D6.D12
C1C3C32C3xC6C62S3xC2xC6C2xS3xDic3 — D6.D12
C32C62 — D6.D12
C1C22C2xC4

Generators and relations for D6.D12
 G = < a,b,c,d | a6=b2=c12=1, d2=a3, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=c-1 >

Subgroups: 762 in 173 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22.D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C62, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, D6:C4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, S3xDic3, C3:D12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, C23.21D6, D6.D4, C6.D12, Dic3:Dic3, C3xC4:Dic3, C3xD6:C4, C6.11D12, C2xS3xDic3, C2xC3:D12, D6.D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C22xS3, C22.D4, S32, C2xD12, C4oD12, S3xD4, D4:2S3, Q8:3S3, C2xS32, C23.21D6, D6.D4, D12:S3, S3xD12, D6.3D6, D6.D12

Smallest permutation representation of D6.D12
On 48 points
Generators in S48
(1 26 9 34 5 30)(2 27 10 35 6 31)(3 28 11 36 7 32)(4 29 12 25 8 33)(13 37 17 41 21 45)(14 38 18 42 22 46)(15 39 19 43 23 47)(16 40 20 44 24 48)
(1 24)(2 41)(3 14)(4 43)(5 16)(6 45)(7 18)(8 47)(9 20)(10 37)(11 22)(12 39)(13 35)(15 25)(17 27)(19 29)(21 31)(23 33)(26 44)(28 46)(30 48)(32 38)(34 40)(36 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 34 44)(2 15 35 43)(3 14 36 42)(4 13 25 41)(5 24 26 40)(6 23 27 39)(7 22 28 38)(8 21 29 37)(9 20 30 48)(10 19 31 47)(11 18 32 46)(12 17 33 45)

G:=sub<Sym(48)| (1,26,9,34,5,30)(2,27,10,35,6,31)(3,28,11,36,7,32)(4,29,12,25,8,33)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48), (1,24)(2,41)(3,14)(4,43)(5,16)(6,45)(7,18)(8,47)(9,20)(10,37)(11,22)(12,39)(13,35)(15,25)(17,27)(19,29)(21,31)(23,33)(26,44)(28,46)(30,48)(32,38)(34,40)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,34,44)(2,15,35,43)(3,14,36,42)(4,13,25,41)(5,24,26,40)(6,23,27,39)(7,22,28,38)(8,21,29,37)(9,20,30,48)(10,19,31,47)(11,18,32,46)(12,17,33,45)>;

G:=Group( (1,26,9,34,5,30)(2,27,10,35,6,31)(3,28,11,36,7,32)(4,29,12,25,8,33)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48), (1,24)(2,41)(3,14)(4,43)(5,16)(6,45)(7,18)(8,47)(9,20)(10,37)(11,22)(12,39)(13,35)(15,25)(17,27)(19,29)(21,31)(23,33)(26,44)(28,46)(30,48)(32,38)(34,40)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,34,44)(2,15,35,43)(3,14,36,42)(4,13,25,41)(5,24,26,40)(6,23,27,39)(7,22,28,38)(8,21,29,37)(9,20,30,48)(10,19,31,47)(11,18,32,46)(12,17,33,45) );

G=PermutationGroup([[(1,26,9,34,5,30),(2,27,10,35,6,31),(3,28,11,36,7,32),(4,29,12,25,8,33),(13,37,17,41,21,45),(14,38,18,42,22,46),(15,39,19,43,23,47),(16,40,20,44,24,48)], [(1,24),(2,41),(3,14),(4,43),(5,16),(6,45),(7,18),(8,47),(9,20),(10,37),(11,22),(12,39),(13,35),(15,25),(17,27),(19,29),(21,31),(23,33),(26,44),(28,46),(30,48),(32,38),(34,40),(36,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,34,44),(2,15,35,43),(3,14,36,42),(4,13,25,41),(5,24,26,40),(6,23,27,39),(7,22,28,38),(8,21,29,37),(9,20,30,48),(10,19,31,47),(11,18,32,46),(12,17,33,45)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G6A···6F6G6H6I6J6K12A···12H12I···12N
order122222233344444446···66666612···1212···12
size11116636224466121218182···244412124···412···12

42 irreducible representations

dim1111111122222222244444444
type+++++++++++++++++-+++
imageC1C2C2C2C2C2C2C2S3S3D4D6D6D6C4oD4D12C4oD12S32S3xD4D4:2S3Q8:3S3C2xS32D12:S3S3xD12D6.3D6
kernelD6.D12C6.D12Dic3:Dic3C3xC4:Dic3C3xD6:C4C6.11D12C2xS3xDic3C2xC3:D12C4:Dic3D6:C4S3xC6C2xDic3C2xC12C22xS3C3xC6D6C6C2xC4C6C6C6C22C2C2C2
# reps1111111111232144411211222

Matrix representation of D6.D12 in GL8(F13)

120000000
012000000
00100000
00010000
000012100
000012000
00000010
00000001
,
512000000
118000000
00100000
00010000
00001000
000011200
00000010
00000001
,
80000000
25000000
001220000
001210000
000012000
000001200
000000121
000000120
,
81000000
05000000
001200000
001210000
000012000
000001200
000000120
000000121

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,11,0,0,0,0,0,0,12,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,2,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1] >;

D6.D12 in GAP, Magma, Sage, TeX

D_6.D_{12}
% in TeX

G:=Group("D6.D12");
// GroupNames label

G:=SmallGroup(288,538);
// by ID

G=gap.SmallGroup(288,538);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,254,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^12=1,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<