Extensions 1→N→G→Q→1 with N=C8xD9 and Q=C2

Direct product G=NxQ with N=C8xD9 and Q=C2
dρLabelID
C2xC8xD9144C2xC8xD9288,110

Semidirect products G=N:Q with N=C8xD9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xD9):1C2 = D8xD9φ: C2/C1C2 ⊆ Out C8xD9724+(C8xD9):1C2288,120
(C8xD9):2C2 = D8:3D9φ: C2/C1C2 ⊆ Out C8xD91444-(C8xD9):2C2288,122
(C8xD9):3C2 = D72:5C2φ: C2/C1C2 ⊆ Out C8xD91444+(C8xD9):3C2288,129
(C8xD9):4C2 = SD16xD9φ: C2/C1C2 ⊆ Out C8xD9724(C8xD9):4C2288,123
(C8xD9):5C2 = SD16:3D9φ: C2/C1C2 ⊆ Out C8xD91444(C8xD9):5C2288,126
(C8xD9):6C2 = D36.2C4φ: C2/C1C2 ⊆ Out C8xD91442(C8xD9):6C2288,112
(C8xD9):7C2 = M4(2)xD9φ: C2/C1C2 ⊆ Out C8xD9724(C8xD9):7C2288,116
(C8xD9):8C2 = D36.C4φ: C2/C1C2 ⊆ Out C8xD91444(C8xD9):8C2288,117

Non-split extensions G=N.Q with N=C8xD9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xD9).1C2 = Q16xD9φ: C2/C1C2 ⊆ Out C8xD91444-(C8xD9).1C2288,127
(C8xD9).2C2 = C16:D9φ: C2/C1C2 ⊆ Out C8xD91442(C8xD9).2C2288,5
(C8xD9).3C2 = C16xD9φ: trivial image1442(C8xD9).3C2288,4

׿
x
:
Z
F
o
wr
Q
<