Copied to
clipboard

G = M4(2)xD9order 288 = 25·32

Direct product of M4(2) and D9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2)xD9, C8:6D18, C72:6C22, C24.44D6, C36.38C23, (C8xD9):7C2, C8:D9:5C2, C9:C8:11C22, (C4xD9).1C4, C4.15(C4xD9), C9:2(C2xM4(2)), C3.(S3xM4(2)), C12.11(C4xS3), C36.12(C2xC4), D18.6(C2xC4), (C2xC12).51D6, (C2xC4).46D18, C4.Dic9:5C2, C22.7(C4xD9), (C9xM4(2)):3C2, (C2xDic9).6C4, Dic9.8(C2xC4), (C22xD9).4C4, C4.38(C22xD9), C18.15(C22xC4), (C2xC36).29C22, (C4xD9).18C22, (C3xM4(2)).3S3, C12.199(C22xS3), C6.54(S3xC2xC4), (C2xC4xD9).3C2, C2.16(C2xC4xD9), (C2xC6).8(C4xS3), (C2xC18).5(C2xC4), SmallGroup(288,116)

Series: Derived Chief Lower central Upper central

C1C18 — M4(2)xD9
C1C3C9C18C36C4xD9C2xC4xD9 — M4(2)xD9
C9C18 — M4(2)xD9
C1C4M4(2)

Generators and relations for M4(2)xD9
 G = < a,b,c,d | a8=b2=c9=d2=1, bab=a5, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 384 in 102 conjugacy classes, 48 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, C23, C9, Dic3, C12, D6, C2xC6, C2xC8, M4(2), M4(2), C22xC4, D9, D9, C18, C18, C3:C8, C24, C4xS3, C2xDic3, C2xC12, C22xS3, C2xM4(2), Dic9, C36, D18, D18, C2xC18, S3xC8, C8:S3, C4.Dic3, C3xM4(2), S3xC2xC4, C9:C8, C72, C4xD9, C2xDic9, C2xC36, C22xD9, S3xM4(2), C8xD9, C8:D9, C4.Dic9, C9xM4(2), C2xC4xD9, M4(2)xD9
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, M4(2), C22xC4, D9, C4xS3, C22xS3, C2xM4(2), D18, S3xC2xC4, C4xD9, C22xD9, S3xM4(2), C2xC4xD9, M4(2)xD9

Smallest permutation representation of M4(2)xD9
On 72 points
Generators in S72
(1 59 23 50 14 68 32 41)(2 60 24 51 15 69 33 42)(3 61 25 52 16 70 34 43)(4 62 26 53 17 71 35 44)(5 63 27 54 18 72 36 45)(6 55 19 46 10 64 28 37)(7 56 20 47 11 65 29 38)(8 57 21 48 12 66 30 39)(9 58 22 49 13 67 31 40)
(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(45 54)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)

G:=sub<Sym(72)| (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)>;

G:=Group( (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72) );

G=PermutationGroup([[(1,59,23,50,14,68,32,41),(2,60,24,51,15,69,33,42),(3,61,25,52,16,70,34,43),(4,62,26,53,17,71,35,44),(5,63,27,54,18,72,36,45),(6,55,19,46,10,64,28,37),(7,56,20,47,11,65,29,38),(8,57,21,48,12,66,30,39),(9,58,22,49,13,67,31,40)], [(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(45,54),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B8A8B8C8D8E8F8G8H9A9B9C12A12B12C18A18B18C18D18E18F24A24B24C24D36A···36F36G36H36I72A···72L
order122222344444466888888889991212121818181818182424242436···3636363672···72
size1129918211299182422221818181822222422244444442···24444···4

60 irreducible representations

dim1111111112222222222244
type++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D6D6M4(2)D9C4xS3C4xS3D18D18C4xD9C4xD9S3xM4(2)M4(2)xD9
kernelM4(2)xD9C8xD9C8:D9C4.Dic9C9xM4(2)C2xC4xD9C4xD9C2xDic9C22xD9C3xM4(2)C24C2xC12D9M4(2)C12C2xC6C8C2xC4C4C22C3C1
# reps1221114221214322636626

Matrix representation of M4(2)xD9 in GL4(F73) generated by

46000
04600
0013
001572
,
1000
0100
0010
004872
,
704500
284200
0010
0001
,
34200
457000
00720
00072
G:=sub<GL(4,GF(73))| [46,0,0,0,0,46,0,0,0,0,1,15,0,0,3,72],[1,0,0,0,0,1,0,0,0,0,1,48,0,0,0,72],[70,28,0,0,45,42,0,0,0,0,1,0,0,0,0,1],[3,45,0,0,42,70,0,0,0,0,72,0,0,0,0,72] >;

M4(2)xD9 in GAP, Magma, Sage, TeX

M_4(2)\times D_9
% in TeX

G:=Group("M4(2)xD9");
// GroupNames label

G:=SmallGroup(288,116);
// by ID

G=gap.SmallGroup(288,116);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,58,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^9=d^2=1,b*a*b=a^5,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<