Extensions 1→N→G→Q→1 with N=D18 and Q=C2xC4

Direct product G=NxQ with N=D18 and Q=C2xC4
dρLabelID
C22xC4xD9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=D18 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
D18:1(C2xC4) = C4xD36φ: C2xC4/C4C2 ⊆ Out D18144D18:1(C2xC4)288,83
D18:2(C2xC4) = Dic9:4D4φ: C2xC4/C4C2 ⊆ Out D18144D18:2(C2xC4)288,91
D18:3(C2xC4) = D36:C4φ: C2xC4/C4C2 ⊆ Out D18144D18:3(C2xC4)288,103
D18:4(C2xC4) = C4xC9:D4φ: C2xC4/C4C2 ⊆ Out D18144D18:4(C2xC4)288,138
D18:5(C2xC4) = C22:C4xD9φ: C2xC4/C22C2 ⊆ Out D1872D18:5(C2xC4)288,90
D18:6(C2xC4) = C2xD18:C4φ: C2xC4/C22C2 ⊆ Out D18144D18:6(C2xC4)288,137

Non-split extensions G=N.Q with N=D18 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
D18.1(C2xC4) = D36.2C4φ: C2xC4/C4C2 ⊆ Out D181442D18.1(C2xC4)288,112
D18.2(C2xC4) = D36.C4φ: C2xC4/C4C2 ⊆ Out D181444D18.2(C2xC4)288,117
D18.3(C2xC4) = C42:2D9φ: C2xC4/C22C2 ⊆ Out D18144D18.3(C2xC4)288,82
D18.4(C2xC4) = C4:C4:7D9φ: C2xC4/C22C2 ⊆ Out D18144D18.4(C2xC4)288,102
D18.5(C2xC4) = C2xC8:D9φ: C2xC4/C22C2 ⊆ Out D18144D18.5(C2xC4)288,111
D18.6(C2xC4) = M4(2)xD9φ: C2xC4/C22C2 ⊆ Out D18724D18.6(C2xC4)288,116
D18.7(C2xC4) = C42xD9φ: trivial image144D18.7(C2xC4)288,81
D18.8(C2xC4) = C4:C4xD9φ: trivial image144D18.8(C2xC4)288,101
D18.9(C2xC4) = C2xC8xD9φ: trivial image144D18.9(C2xC4)288,110

׿
x
:
Z
F
o
wr
Q
<