extension | φ:Q→Out N | d | ρ | Label | ID |
(S3xC2xC12):1C2 = D6:D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):1C2 | 288,554 |
(S3xC2xC12):2C2 = C2xD6.D6 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):2C2 | 288,948 |
(S3xC2xC12):3C2 = D6:2D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):3C2 | 288,556 |
(S3xC2xC12):4C2 = C12:7D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):4C2 | 288,557 |
(S3xC2xC12):5C2 = C3xC12:D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):5C2 | 288,666 |
(S3xC2xC12):6C2 = C3xD6:3D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):6C2 | 288,709 |
(S3xC2xC12):7C2 = C2xD12:5S3 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):7C2 | 288,943 |
(S3xC2xC12):8C2 = C2xD6.6D6 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):8C2 | 288,949 |
(S3xC2xC12):9C2 = C2xS3xD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):9C2 | 288,951 |
(S3xC2xC12):10C2 = S3xC4oD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | 4 | (S3xC2xC12):10C2 | 288,953 |
(S3xC2xC12):11C2 = S3xC6xD4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):11C2 | 288,992 |
(S3xC2xC12):12C2 = C6xD4:2S3 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):12C2 | 288,993 |
(S3xC2xC12):13C2 = C6xQ8:3S3 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):13C2 | 288,996 |
(S3xC2xC12):14C2 = C3xS3xC4oD4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | 4 | (S3xC2xC12):14C2 | 288,998 |
(S3xC2xC12):15C2 = C62.20C23 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):15C2 | 288,498 |
(S3xC2xC12):16C2 = C62.49C23 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):16C2 | 288,527 |
(S3xC2xC12):17C2 = C4xD6:S3 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):17C2 | 288,549 |
(S3xC2xC12):18C2 = C4xC3:D12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):18C2 | 288,551 |
(S3xC2xC12):19C2 = C62.74C23 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):19C2 | 288,552 |
(S3xC2xC12):20C2 = C62.75C23 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):20C2 | 288,553 |
(S3xC2xC12):21C2 = S3xD6:C4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):21C2 | 288,568 |
(S3xC2xC12):22C2 = C12xD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):22C2 | 288,644 |
(S3xC2xC12):23C2 = C3xS3xC22:C4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):23C2 | 288,651 |
(S3xC2xC12):24C2 = C3xDic3:4D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):24C2 | 288,652 |
(S3xC2xC12):25C2 = C3xC23.9D6 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):25C2 | 288,654 |
(S3xC2xC12):26C2 = C3xDic3:5D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):26C2 | 288,664 |
(S3xC2xC12):27C2 = C3xD6.D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 96 | | (S3xC2xC12):27C2 | 288,665 |
(S3xC2xC12):28C2 = C12xC3:D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):28C2 | 288,699 |
(S3xC2xC12):29C2 = S32xC2xC4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):29C2 | 288,950 |
(S3xC2xC12):30C2 = C3xDic3:D4 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):30C2 | 288,655 |
(S3xC2xC12):31C2 = C6xC4oD12 | φ: C2/C1 → C2 ⊆ Out S3xC2xC12 | 48 | | (S3xC2xC12):31C2 | 288,991 |