Extensions 1→N→G→Q→1 with N=S3xC2xC12 and Q=C2

Direct product G=NxQ with N=S3xC2xC12 and Q=C2
dρLabelID
S3xC22xC1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=S3xC2xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC2xC12):1C2 = D6:D12φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):1C2288,554
(S3xC2xC12):2C2 = C2xD6.D6φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):2C2288,948
(S3xC2xC12):3C2 = D6:2D12φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):3C2288,556
(S3xC2xC12):4C2 = C12:7D12φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):4C2288,557
(S3xC2xC12):5C2 = C3xC12:D4φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):5C2288,666
(S3xC2xC12):6C2 = C3xD6:3D4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):6C2288,709
(S3xC2xC12):7C2 = C2xD12:5S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):7C2288,943
(S3xC2xC12):8C2 = C2xD6.6D6φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):8C2288,949
(S3xC2xC12):9C2 = C2xS3xD12φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):9C2288,951
(S3xC2xC12):10C2 = S3xC4oD12φ: C2/C1C2 ⊆ Out S3xC2xC12484(S3xC2xC12):10C2288,953
(S3xC2xC12):11C2 = S3xC6xD4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):11C2288,992
(S3xC2xC12):12C2 = C6xD4:2S3φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):12C2288,993
(S3xC2xC12):13C2 = C6xQ8:3S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):13C2288,996
(S3xC2xC12):14C2 = C3xS3xC4oD4φ: C2/C1C2 ⊆ Out S3xC2xC12484(S3xC2xC12):14C2288,998
(S3xC2xC12):15C2 = C62.20C23φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):15C2288,498
(S3xC2xC12):16C2 = C62.49C23φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):16C2288,527
(S3xC2xC12):17C2 = C4xD6:S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):17C2288,549
(S3xC2xC12):18C2 = C4xC3:D12φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):18C2288,551
(S3xC2xC12):19C2 = C62.74C23φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):19C2288,552
(S3xC2xC12):20C2 = C62.75C23φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):20C2288,553
(S3xC2xC12):21C2 = S3xD6:C4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):21C2288,568
(S3xC2xC12):22C2 = C12xD12φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):22C2288,644
(S3xC2xC12):23C2 = C3xS3xC22:C4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):23C2288,651
(S3xC2xC12):24C2 = C3xDic3:4D4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):24C2288,652
(S3xC2xC12):25C2 = C3xC23.9D6φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):25C2288,654
(S3xC2xC12):26C2 = C3xDic3:5D4φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):26C2288,664
(S3xC2xC12):27C2 = C3xD6.D4φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12):27C2288,665
(S3xC2xC12):28C2 = C12xC3:D4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):28C2288,699
(S3xC2xC12):29C2 = S32xC2xC4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):29C2288,950
(S3xC2xC12):30C2 = C3xDic3:D4φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):30C2288,655
(S3xC2xC12):31C2 = C6xC4oD12φ: C2/C1C2 ⊆ Out S3xC2xC1248(S3xC2xC12):31C2288,991

Non-split extensions G=N.Q with N=S3xC2xC12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC2xC12).1C2 = C2xD6.Dic3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).1C2288,467
(S3xC2xC12).2C2 = D6:Dic6φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).2C2288,499
(S3xC2xC12).3C2 = C62.25C23φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).3C2288,503
(S3xC2xC12).4C2 = S3xC4.Dic3φ: C2/C1C2 ⊆ Out S3xC2xC12484(S3xC2xC12).4C2288,461
(S3xC2xC12).5C2 = C62.11C23φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).5C2288,489
(S3xC2xC12).6C2 = D6:6Dic6φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).6C2288,504
(S3xC2xC12).7C2 = D6:7Dic6φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).7C2288,505
(S3xC2xC12).8C2 = S3xC4:Dic3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).8C2288,537
(S3xC2xC12).9C2 = C3xS3xC4:C4φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).9C2288,662
(S3xC2xC12).10C2 = C3xC4:C4:7S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).10C2288,663
(S3xC2xC12).11C2 = C3xC4.D12φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).11C2288,668
(S3xC2xC12).12C2 = C3xS3xM4(2)φ: C2/C1C2 ⊆ Out S3xC2xC12484(S3xC2xC12).12C2288,677
(S3xC2xC12).13C2 = C3xD6:3Q8φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).13C2288,717
(S3xC2xC12).14C2 = C2xS3xDic6φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).14C2288,942
(S3xC2xC12).15C2 = S3xC6xQ8φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).15C2288,995
(S3xC2xC12).16C2 = C12.77D12φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).16C2288,204
(S3xC2xC12).17C2 = C3xD6:C8φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).17C2288,254
(S3xC2xC12).18C2 = C2xS3xC3:C8φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).18C2288,460
(S3xC2xC12).19C2 = C4xS3xDic3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).19C2288,523
(S3xC2xC12).20C2 = S3xDic3:C4φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).20C2288,524
(S3xC2xC12).21C2 = C3xC42:2S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).21C2288,643
(S3xC2xC12).22C2 = C3xD6:Q8φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).22C2288,667
(S3xC2xC12).23C2 = C6xC8:S3φ: C2/C1C2 ⊆ Out S3xC2xC1296(S3xC2xC12).23C2288,671
(S3xC2xC12).24C2 = S3xC4xC12φ: trivial image96(S3xC2xC12).24C2288,642
(S3xC2xC12).25C2 = S3xC2xC24φ: trivial image96(S3xC2xC12).25C2288,670

׿
x
:
Z
F
o
wr
Q
<