Copied to
clipboard

G = C2xD6.D6order 288 = 25·32

Direct product of C2 and D6.D6

direct product, metabelian, supersoluble, monomial

Aliases: C2xD6.D6, C62.132C23, (C4xS3):16D6, C6:2(C4oD12), C6.7(S3xC23), (C3xC6).7C24, (C2xC12).310D6, (S3xC12):14C22, (S3xC6).21C23, D6.19(C22xS3), (C22xS3).71D6, C3:D12:19C22, D6:S3:19C22, (C6xC12).257C22, (C3xC12).150C23, C12.149(C22xS3), (C2xDic3).106D6, C32:2Q8:17C22, C3:Dic3.38C23, Dic3.19(C22xS3), (C3xDic3).20C23, (C6xDic3).148C22, (S3xC2xC4):15S3, (S3xC2xC12):2C2, C4.96(C2xS32), (C2xC4).143S32, C3:2(C2xC4oD12), C32:3(C2xC4oD4), (C3xC6):3(C4oD4), C22.62(C2xS32), C2.10(C22xS32), (C4xC3:S3):18C22, (C2xC3:D12):23C2, (C2xD6:S3):18C2, (C2xC32:2Q8):19C2, (C2xC3:S3).42C23, (S3xC2xC6).104C22, (C2xC6).149(C22xS3), (C22xC3:S3).101C22, (C2xC3:Dic3).179C22, (C2xC4xC3:S3):24C2, SmallGroup(288,948)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2xD6.D6
C1C3C32C3xC6S3xC6D6:S3C2xD6:S3 — C2xD6.D6
C32C3xC6 — C2xD6.D6
C1C2xC4

Generators and relations for C2xD6.D6
 G = < a,b,c,d,e | a2=b6=c2=1, d6=e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d5 >

Subgroups: 1234 in 355 conjugacy classes, 116 normal (14 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C22xC4, C2xD4, C2xQ8, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C2xC4oD4, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C4oD12, C2xC3:D4, C22xC12, D6:S3, C3:D12, C32:2Q8, S3xC12, C6xDic3, C4xC3:S3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, C2xC4oD12, D6.D6, C2xD6:S3, C2xC3:D12, C2xC32:2Q8, S3xC2xC12, C2xC4xC3:S3, C2xD6.D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, S32, C4oD12, S3xC23, C2xS32, C2xC4oD12, D6.D6, C22xS32, C2xD6.D6

Smallest permutation representation of C2xD6.D6
On 48 points
Generators in S48
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 46)(26 47)(27 48)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 3 5 7 9 11)(2 4 6 8 10 12)(13 15 17 19 21 23)(14 16 18 20 22 24)(25 35 33 31 29 27)(26 36 34 32 30 28)(37 47 45 43 41 39)(38 48 46 44 42 40)
(1 33)(2 34)(3 35)(4 36)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27 7 33)(2 32 8 26)(3 25 9 31)(4 30 10 36)(5 35 11 29)(6 28 12 34)(13 48 19 42)(14 41 20 47)(15 46 21 40)(16 39 22 45)(17 44 23 38)(18 37 24 43)

G:=sub<Sym(48)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,3,5,7,9,11)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,7,33)(2,32,8,26)(3,25,9,31)(4,30,10,36)(5,35,11,29)(6,28,12,34)(13,48,19,42)(14,41,20,47)(15,46,21,40)(16,39,22,45)(17,44,23,38)(18,37,24,43)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,3,5,7,9,11)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,7,33)(2,32,8,26)(3,25,9,31)(4,30,10,36)(5,35,11,29)(6,28,12,34)(13,48,19,42)(14,41,20,47)(15,46,21,40)(16,39,22,45)(17,44,23,38)(18,37,24,43) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,46),(26,47),(27,48),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,3,5,7,9,11),(2,4,6,8,10,12),(13,15,17,19,21,23),(14,16,18,20,22,24),(25,35,33,31,29,27),(26,36,34,32,30,28),(37,47,45,43,41,39),(38,48,46,44,42,40)], [(1,33),(2,34),(3,35),(4,36),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27,7,33),(2,32,8,26),(3,25,9,31),(4,30,10,36),(5,35,11,29),(6,28,12,34),(13,48,19,42),(14,41,20,47),(15,46,21,40),(16,39,22,45),(17,44,23,38),(18,37,24,43)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I6J···6Q12A···12H12I12J12K12L12M···12T
order122222222233344444444446···66666···612···121212121212···12
size1111666618182241111666618182···24446···62···244446···6

60 irreducible representations

dim111111122222224444
type+++++++++++++++
imageC1C2C2C2C2C2C2S3D6D6D6D6C4oD4C4oD12S32C2xS32C2xS32D6.D6
kernelC2xD6.D6D6.D6C2xD6:S3C2xC3:D12C2xC32:2Q8S3xC2xC12C2xC4xC3:S3S3xC2xC4C4xS3C2xDic3C2xC12C22xS3C3xC6C6C2xC4C4C22C2
# reps1812121282224161214

Matrix representation of C2xD6.D6 in GL6(F13)

1200000
0120000
001000
000100
0000120
0000012
,
100000
010000
0012000
0001200
00001212
000010
,
100000
010000
0001200
0012000
000011
0000012
,
1120000
100000
005000
000500
0000120
0000012
,
1200000
1210000
0001200
001000
0000120
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,1,12],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C2xD6.D6 in GAP, Magma, Sage, TeX

C_2\times D_6.D_6
% in TeX

G:=Group("C2xD6.D6");
// GroupNames label

G:=SmallGroup(288,948);
// by ID

G=gap.SmallGroup(288,948);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^2=1,d^6=e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<