Extensions 1→N→G→Q→1 with N=D8 and Q=D10

Direct product G=NxQ with N=D8 and Q=D10
dρLabelID
C2xD5xD880C2xD5xD8320,1426

Semidirect products G=N:Q with N=D8 and Q=D10
extensionφ:Q→Out NdρLabelID
D8:1D10 = D5xD16φ: D10/D5C2 ⊆ Out D8804+D8:1D10320,537
D8:2D10 = D16:D5φ: D10/D5C2 ⊆ Out D8804D8:2D10320,538
D8:3D10 = D5xC8:C22φ: D10/D5C2 ⊆ Out D8408+D8:3D10320,1444
D8:4D10 = SD16:D10φ: D10/D5C2 ⊆ Out D8808-D8:4D10320,1445
D8:5D10 = D8:5D10φ: D10/D5C2 ⊆ Out D8808+D8:5D10320,1446
D8:6D10 = D8:6D10φ: D10/D5C2 ⊆ Out D8808-D8:6D10320,1447
D8:7D10 = C2xC5:D16φ: D10/C10C2 ⊆ Out D8160D8:7D10320,773
D8:8D10 = D8:D10φ: D10/C10C2 ⊆ Out D8804+D8:8D10320,820
D8:9D10 = C2xD8:D5φ: D10/C10C2 ⊆ Out D880D8:9D10320,1427
D8:10D10 = Q16:D10φ: D10/C10C2 ⊆ Out D8804D8:10D10320,1440
D8:11D10 = D8:11D10φ: D10/C10C2 ⊆ Out D8804D8:11D10320,1442
D8:12D10 = C2xD8:3D5φ: trivial image160D8:12D10320,1428
D8:13D10 = D8:13D10φ: trivial image804D8:13D10320,1429
D8:14D10 = D5xC4oD8φ: trivial image804D8:14D10320,1439
D8:15D10 = D8:15D10φ: trivial image804+D8:15D10320,1441

Non-split extensions G=N.Q with N=D8 and Q=D10
extensionφ:Q→Out NdρLabelID
D8.1D10 = D16:3D5φ: D10/D5C2 ⊆ Out D81604-D8.1D10320,539
D8.2D10 = D5xSD32φ: D10/D5C2 ⊆ Out D8804D8.2D10320,540
D8.3D10 = C16:D10φ: D10/D5C2 ⊆ Out D8804+D8.3D10320,541
D8.4D10 = SD32:D5φ: D10/D5C2 ⊆ Out D81604-D8.4D10320,542
D8.5D10 = SD32:3D5φ: D10/D5C2 ⊆ Out D81604D8.5D10320,543
D8.6D10 = D8.D10φ: D10/C10C2 ⊆ Out D8804D8.6D10320,774
D8.7D10 = C2xD8.D5φ: D10/C10C2 ⊆ Out D8160D8.7D10320,775
D8.8D10 = C40.30C23φ: D10/C10C2 ⊆ Out D81604D8.8D10320,821
D8.9D10 = C40.31C23φ: D10/C10C2 ⊆ Out D81604-D8.9D10320,822
D8.10D10 = D20.47D4φ: trivial image1604-D8.10D10320,1443

׿
x
:
Z
F
o
wr
Q
<