Copied to
clipboard

G = Q16:D10order 320 = 26·5

4th semidirect product of Q16 and D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:10D10, Q16:9D10, SD16:10D10, D40:22C22, C20.15C24, C40.37C23, D20.10C23, Dic20:19C22, Dic10.10C23, C4oD8:3D5, C4oD4:8D10, (C2xC8):12D10, D8:D5:7C2, D40:C2:7C2, (C2xC40):5C22, C4.222(D4xD5), (D4xD5):7C22, D40:7C2:7C2, (Q8xD5):8C22, C22.5(D4xD5), D4:D5:13C22, Q16:D5:7C2, D10.87(C2xD4), (C4xD5).107D4, C20.381(C2xD4), SD16:D5:7C2, C4oD20:6C22, (C5xD8):15C22, Q8:D5:12C22, C5:2C8.6C23, D4.9(C22xD5), (C4xD5).8C23, (C5xD4).9C23, C4.15(C23xD5), C8.15(C22xD5), D4.8D10:2C2, Q8.9(C22xD5), (C5xQ8).9C23, C40:C2:16C22, C8:D5:15C22, C5:2(D8:C22), D4.D5:12C22, (C2xDic5).88D4, Dic5.98(C2xD4), (C5xQ16):13C22, C5:Q16:11C22, (C22xD5).50D4, (C2xC20).532C23, (C5xSD16):10C22, D4:2D5.9C22, C10.116(C22xD4), Q8:2D5.9C22, C2.89(C2xD4xD5), (C5xC4oD8):3C2, (D5xC4oD4):2C2, (C2xC8:D5):1C2, (C2xC10).12(C2xD4), (C5xC4oD4):2C22, (C2xC5:2C8):16C22, (C2xC4xD5).168C22, (C2xC4).619(C22xD5), SmallGroup(320,1440)

Series: Derived Chief Lower central Upper central

C1C20 — Q16:D10
C1C5C10C20C4xD5C2xC4xD5D5xC4oD4 — Q16:D10
C5C10C20 — Q16:D10
C1C4C2xC4C4oD8

Generators and relations for Q16:D10
 G = < a,b,c,d | a8=c10=d2=1, b2=a4, bab-1=cac-1=a-1, dad=a3, cbc-1=a6b, dbd=a2b, dcd=c-1 >

Subgroups: 1022 in 262 conjugacy classes, 99 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2xC8, C2xC8, M4(2), D8, D8, SD16, SD16, Q16, Q16, C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xM4(2), C4oD8, C4oD8, C8:C22, C8.C22, C2xC4oD4, C5:2C8, C40, Dic10, Dic10, C4xD5, C4xD5, D20, D20, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C22xD5, C22xD5, D8:C22, C8:D5, C40:C2, D40, Dic20, C2xC5:2C8, D4:D5, D4.D5, Q8:D5, C5:Q16, C2xC40, C5xD8, C5xSD16, C5xQ16, C2xC4xD5, C2xC4xD5, C4oD20, C4oD20, D4xD5, D4xD5, D4:2D5, D4:2D5, Q8xD5, Q8:2D5, C5xC4oD4, C2xC8:D5, D40:7C2, D8:D5, D40:C2, SD16:D5, Q16:D5, D4.8D10, C5xC4oD8, D5xC4oD4, Q16:D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, C22xD5, D8:C22, D4xD5, C23xD5, C2xD4xD5, Q16:D10

Smallest permutation representation of Q16:D10
On 80 points
Generators in S80
(1 50 13 38 33 18 45 6)(2 7 46 19 34 39 14 41)(3 42 15 40 35 20 47 8)(4 9 48 11 36 31 16 43)(5 44 17 32 37 12 49 10)(21 26 78 68 55 60 63 73)(22 74 64 51 56 69 79 27)(23 28 80 70 57 52 65 75)(24 76 66 53 58 61 71 29)(25 30 72 62 59 54 67 77)
(1 68 33 73)(2 51 34 27)(3 70 35 75)(4 53 36 29)(5 62 37 77)(6 55 38 21)(7 64 39 79)(8 57 40 23)(9 66 31 71)(10 59 32 25)(11 24 43 58)(12 67 44 72)(13 26 45 60)(14 69 46 74)(15 28 47 52)(16 61 48 76)(17 30 49 54)(18 63 50 78)(19 22 41 56)(20 65 42 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 72)(2 71)(3 80)(4 79)(5 78)(6 77)(7 76)(8 75)(9 74)(10 73)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 30)(19 29)(20 28)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 63)(38 62)(39 61)(40 70)(41 53)(42 52)(43 51)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)

G:=sub<Sym(80)| (1,50,13,38,33,18,45,6)(2,7,46,19,34,39,14,41)(3,42,15,40,35,20,47,8)(4,9,48,11,36,31,16,43)(5,44,17,32,37,12,49,10)(21,26,78,68,55,60,63,73)(22,74,64,51,56,69,79,27)(23,28,80,70,57,52,65,75)(24,76,66,53,58,61,71,29)(25,30,72,62,59,54,67,77), (1,68,33,73)(2,51,34,27)(3,70,35,75)(4,53,36,29)(5,62,37,77)(6,55,38,21)(7,64,39,79)(8,57,40,23)(9,66,31,71)(10,59,32,25)(11,24,43,58)(12,67,44,72)(13,26,45,60)(14,69,46,74)(15,28,47,52)(16,61,48,76)(17,30,49,54)(18,63,50,78)(19,22,41,56)(20,65,42,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,72)(2,71)(3,80)(4,79)(5,78)(6,77)(7,76)(8,75)(9,74)(10,73)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,30)(19,29)(20,28)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,53)(42,52)(43,51)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)>;

G:=Group( (1,50,13,38,33,18,45,6)(2,7,46,19,34,39,14,41)(3,42,15,40,35,20,47,8)(4,9,48,11,36,31,16,43)(5,44,17,32,37,12,49,10)(21,26,78,68,55,60,63,73)(22,74,64,51,56,69,79,27)(23,28,80,70,57,52,65,75)(24,76,66,53,58,61,71,29)(25,30,72,62,59,54,67,77), (1,68,33,73)(2,51,34,27)(3,70,35,75)(4,53,36,29)(5,62,37,77)(6,55,38,21)(7,64,39,79)(8,57,40,23)(9,66,31,71)(10,59,32,25)(11,24,43,58)(12,67,44,72)(13,26,45,60)(14,69,46,74)(15,28,47,52)(16,61,48,76)(17,30,49,54)(18,63,50,78)(19,22,41,56)(20,65,42,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,72)(2,71)(3,80)(4,79)(5,78)(6,77)(7,76)(8,75)(9,74)(10,73)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,30)(19,29)(20,28)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,53)(42,52)(43,51)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54) );

G=PermutationGroup([[(1,50,13,38,33,18,45,6),(2,7,46,19,34,39,14,41),(3,42,15,40,35,20,47,8),(4,9,48,11,36,31,16,43),(5,44,17,32,37,12,49,10),(21,26,78,68,55,60,63,73),(22,74,64,51,56,69,79,27),(23,28,80,70,57,52,65,75),(24,76,66,53,58,61,71,29),(25,30,72,62,59,54,67,77)], [(1,68,33,73),(2,51,34,27),(3,70,35,75),(4,53,36,29),(5,62,37,77),(6,55,38,21),(7,64,39,79),(8,57,40,23),(9,66,31,71),(10,59,32,25),(11,24,43,58),(12,67,44,72),(13,26,45,60),(14,69,46,74),(15,28,47,52),(16,61,48,76),(17,30,49,54),(18,63,50,78),(19,22,41,56),(20,65,42,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,72),(2,71),(3,80),(4,79),(5,78),(6,77),(7,76),(8,75),(9,74),(10,73),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,30),(19,29),(20,28),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,63),(38,62),(39,61),(40,70),(41,53),(42,52),(43,51),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H20I20J40A···40H
order12222222244444444455888810101010101010102020202020202020202040···40
size11244101020201124410102020224420202244888822224488884···4

50 irreducible representations

dim11111111112222222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10D8:C22D4xD5D4xD5Q16:D10
kernelQ16:D10C2xC8:D5D40:7C2D8:D5D40:C2SD16:D5Q16:D5D4.8D10C5xC4oD8D5xC4oD4C4xD5C2xDic5C22xD5C4oD8C2xC8D8SD16Q16C4oD4C5C4C22C1
# reps11122222122112224242228

Matrix representation of Q16:D10 in GL6(F41)

4000000
0400000
000010
0000040
0004000
0040000
,
100000
010000
0003200
0032000
000090
0000032
,
40350000
6350000
000010
000001
001000
000100
,
100000
35400000
0000032
000090
0003200
009000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32],[40,6,0,0,0,0,35,35,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,35,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,9,0,0,0,0,32,0,0,0,0,9,0,0,0,0,32,0,0,0] >;

Q16:D10 in GAP, Magma, Sage, TeX

Q_{16}\rtimes D_{10}
% in TeX

G:=Group("Q16:D10");
// GroupNames label

G:=SmallGroup(320,1440);
// by ID

G=gap.SmallGroup(320,1440);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,1123,570,185,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^10=d^2=1,b^2=a^4,b*a*b^-1=c*a*c^-1=a^-1,d*a*d=a^3,c*b*c^-1=a^6*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<