Extensions 1→N→G→Q→1 with N=C2xD4 and Q=F5

Direct product G=NxQ with N=C2xD4 and Q=F5
dρLabelID
C2xD4xF540C2xD4xF5320,1595

Semidirect products G=N:Q with N=C2xD4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2xD4):1F5 = D10.SD16φ: F5/C5C4 ⊆ Out C2xD480(C2xD4):1F5320,258
(C2xD4):2F5 = (C2xD4):F5φ: F5/C5C4 ⊆ Out C2xD4408+(C2xD4):2F5320,260
(C2xD4):3F5 = C2xD20:C4φ: F5/D5C2 ⊆ Out C2xD480(C2xD4):3F5320,1104
(C2xD4):4F5 = (D4xC10):C4φ: F5/D5C2 ⊆ Out C2xD4408+(C2xD4):4F5320,1105
(C2xD4):5F5 = C2xD4:F5φ: F5/D5C2 ⊆ Out C2xD480(C2xD4):5F5320,1106
(C2xD4):6F5 = (C2xD4):6F5φ: F5/D5C2 ⊆ Out C2xD4808-(C2xD4):6F5320,1107
(C2xD4):7F5 = (C2xD4):7F5φ: F5/D5C2 ⊆ Out C2xD4408+(C2xD4):7F5320,1108
(C2xD4):8F5 = (C2xD4):8F5φ: F5/D5C2 ⊆ Out C2xD4808-(C2xD4):8F5320,1109
(C2xD4):9F5 = (C2xF5):D4φ: F5/D5C2 ⊆ Out C2xD440(C2xD4):9F5320,1117
(C2xD4):10F5 = C2.(D4xF5)φ: F5/D5C2 ⊆ Out C2xD480(C2xD4):10F5320,1118
(C2xD4):11F5 = D10.C24φ: F5/D5C2 ⊆ Out C2xD4408+(C2xD4):11F5320,1596

Non-split extensions G=N.Q with N=C2xD4 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2xD4).1F5 = (C2xD4).F5φ: F5/C5C4 ⊆ Out C2xD4160(C2xD4).1F5320,259
(C2xD4).2F5 = (D4xC10).C4φ: F5/C5C4 ⊆ Out C2xD4808-(C2xD4).2F5320,261
(C2xD4).3F5 = Dic5.SD16φ: F5/C5C4 ⊆ Out C2xD4160(C2xD4).3F5320,263
(C2xD4).4F5 = Dic5.23D8φ: F5/D5C2 ⊆ Out C2xD4160(C2xD4).4F5320,262
(C2xD4).5F5 = C5:C8:7D4φ: F5/D5C2 ⊆ Out C2xD4160(C2xD4).5F5320,1111
(C2xD4).6F5 = C20:2M4(2)φ: F5/D5C2 ⊆ Out C2xD4160(C2xD4).6F5320,1112
(C2xD4).7F5 = (C2xD4).7F5φ: F5/D5C2 ⊆ Out C2xD4160(C2xD4).7F5320,1113
(C2xD4).8F5 = (C2xD4).8F5φ: F5/D5C2 ⊆ Out C2xD4160(C2xD4).8F5320,1114
(C2xD4).9F5 = (C2xD4).9F5φ: F5/D5C2 ⊆ Out C2xD4808-(C2xD4).9F5320,1115
(C2xD4).10F5 = D5:(C4.D4)φ: F5/D5C2 ⊆ Out C2xD4408+(C2xD4).10F5320,1116
(C2xD4).11F5 = Dic5.C24φ: F5/D5C2 ⊆ Out C2xD4808-(C2xD4).11F5320,1594
(C2xD4).12F5 = D4xC5:C8φ: trivial image160(C2xD4).12F5320,1110
(C2xD4).13F5 = C2xD4.F5φ: trivial image160(C2xD4).13F5320,1593

׿
x
:
Z
F
o
wr
Q
<