metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2xD4):7F5, (D4xC10):3C4, D5:(C23:C4), C23:F5:3C2, C23:1(C2xF5), D10.5(C2xD4), (C23xD5):7C4, C22:F5:2C22, D10.D4:3C2, (C22xD5).67D4, C22.1(C22:F5), D10.43(C22:C4), C22.11(C22xF5), (C2xD20).139C22, (C23xD5).87C22, (C22xD5).147C23, (C2xC4xD5):4C4, C5:2(C2xC23:C4), (C2xC4):1(C2xF5), (C2xD4xD5).7C2, (C2xC20):2(C2xC4), (C2xC5:D4):3C4, (C2xC22:F5):2C2, (C22xC10):2(C2xC4), (C2xDic5):3(C2xC4), (C22xD5):4(C2xC4), C2.18(C2xC22:F5), C10.17(C2xC22:C4), (C2xC10).1(C22:C4), (C2xC10).73(C22xC4), (C2xC5:D4).87C22, SmallGroup(320,1108)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2xD4):7F5
G = < a,b,c,d,e | a2=b4=c2=d5=e4=1, ebe-1=ab=ba, ac=ca, ad=da, eae-1=ab2, cbc=b-1, bd=db, cd=dc, ece-1=b2c, ede-1=d3 >
Subgroups: 1162 in 210 conjugacy classes, 50 normal (28 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, D5, C10, C10, C22:C4, C22xC4, C2xD4, C2xD4, C24, Dic5, C20, F5, D10, D10, D10, C2xC10, C2xC10, C2xC10, C23:C4, C2xC22:C4, C22xD4, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C2xF5, C22xD5, C22xD5, C22xD5, C22xC10, C2xC23:C4, C22:F5, C22:F5, C2xC4xD5, C2xD20, D4xD5, C2xC5:D4, D4xC10, C22xF5, C23xD5, D10.D4, C23:F5, C2xC22:F5, C2xD4xD5, (C2xD4):7F5
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, F5, C23:C4, C2xC22:C4, C2xF5, C2xC23:C4, C22:F5, C22xF5, C2xC22:F5, (C2xD4):7F5
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 31 26 36)(22 33 30 39)(23 35 29 37)(24 32 28 40)(25 34 27 38)
G:=sub<Sym(40)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,31,26,36),(22,33,30,39),(23,35,29,37),(24,32,28,40),(25,34,27,38)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | ··· | 4J | 5 | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 10 | 10 | 10 | 20 | 4 | 20 | ··· | 20 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | F5 | C23:C4 | C2xF5 | C2xF5 | C22:F5 | (C2xD4):7F5 |
kernel | (C2xD4):7F5 | D10.D4 | C23:F5 | C2xC22:F5 | C2xD4xD5 | C2xC4xD5 | C2xC5:D4 | D4xC10 | C23xD5 | C22xD5 | C2xD4 | D5 | C2xC4 | C23 | C22 | C1 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 4 | 2 |
Matrix representation of (C2xD4):7F5 ►in GL8(F41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 36 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 13 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 36 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 13 |
40 | 40 | 40 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 38 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 28 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,13,32,0,0,0,0,0,0,5,28,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13],[40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,0,0,0,1,0,0,0,0,0,40,0,1,0,0,0,0,0,0,0,0,40,38,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,13,7,0,0,0,0,0,0,5,28] >;
(C2xD4):7F5 in GAP, Magma, Sage, TeX
(C_2\times D_4)\rtimes_7F_5
% in TeX
G:=Group("(C2xD4):7F5");
// GroupNames label
G:=SmallGroup(320,1108);
// by ID
G=gap.SmallGroup(320,1108);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,297,1684,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^4=1,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^3>;
// generators/relations