Extensions 1→N→G→Q→1 with N=Q8xC10 and Q=C4

Direct product G=NxQ with N=Q8xC10 and Q=C4
dρLabelID
Q8xC2xC20320Q8xC2xC20320,1518

Semidirect products G=N:Q with N=Q8xC10 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8xC10):1C4 = D10.Q16φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):1C4320,264
(Q8xC10):2C4 = (C2xQ8):F5φ: C4/C1C4 ⊆ Out Q8xC10808+(Q8xC10):2C4320,266
(Q8xC10):3C4 = C2xQ8:F5φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):3C4320,1119
(Q8xC10):4C4 = (C2xQ8):4F5φ: C4/C1C4 ⊆ Out Q8xC10808-(Q8xC10):4C4320,1120
(Q8xC10):5C4 = C2xQ8:2F5φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):5C4320,1121
(Q8xC10):6C4 = (C2xQ8):6F5φ: C4/C1C4 ⊆ Out Q8xC10808+(Q8xC10):6C4320,1122
(Q8xC10):7C4 = (C2xQ8):7F5φ: C4/C1C4 ⊆ Out Q8xC10808+(Q8xC10):7C4320,1123
(Q8xC10):8C4 = (C2xF5):Q8φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):8C4320,1128
(Q8xC10):9C4 = C2xQ8xF5φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):9C4320,1599
(Q8xC10):10C4 = D5.2- 1+4φ: C4/C1C4 ⊆ Out Q8xC10808-(Q8xC10):10C4320,1600
(Q8xC10):11C4 = C10.29C4wrC2φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):11C4320,96
(Q8xC10):12C4 = C42:Dic5φ: C4/C1C4 ⊆ Out Q8xC10804(Q8xC10):12C4320,99
(Q8xC10):13C4 = C5xC23.31D4φ: C4/C1C4 ⊆ Out Q8xC1080(Q8xC10):13C4320,133
(Q8xC10):14C4 = C5xC42:3C4φ: C4/C1C4 ⊆ Out Q8xC10804(Q8xC10):14C4320,159
(Q8xC10):15C4 = C2xQ8:Dic5φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10):15C4320,851
(Q8xC10):16C4 = (Q8xC10):16C4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10):16C4320,852
(Q8xC10):17C4 = (Q8xC10):17C4φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10):17C4320,857
(Q8xC10):18C4 = C2xD4:2Dic5φ: C4/C2C2 ⊆ Out Q8xC1080(Q8xC10):18C4320,862
(Q8xC10):19C4 = (D4xC10):21C4φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10):19C4320,863
(Q8xC10):20C4 = (D4xC10):22C4φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10):20C4320,867
(Q8xC10):21C4 = C2xQ8xDic5φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10):21C4320,1483
(Q8xC10):22C4 = C10.422- 1+4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10):22C4320,1484
(Q8xC10):23C4 = C5xC23.67C23φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10):23C4320,892
(Q8xC10):24C4 = C5xC23.C23φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10):24C4320,911
(Q8xC10):25C4 = C10xQ8:C4φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10):25C4320,916
(Q8xC10):26C4 = C5xC23.38D4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10):26C4320,920
(Q8xC10):27C4 = C10xC4wrC2φ: C4/C2C2 ⊆ Out Q8xC1080(Q8xC10):27C4320,921
(Q8xC10):28C4 = C5xC42:C22φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10):28C4320,922
(Q8xC10):29C4 = C5xC23.32C23φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10):29C4320,1521

Non-split extensions G=N.Q with N=Q8xC10 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8xC10).1C4 = (C2xQ8).F5φ: C4/C1C4 ⊆ Out Q8xC10160(Q8xC10).1C4320,265
(Q8xC10).2C4 = (Q8xC10).C4φ: C4/C1C4 ⊆ Out Q8xC10808-(Q8xC10).2C4320,267
(Q8xC10).3C4 = Dic5.Q16φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).3C4320,269
(Q8xC10).4C4 = Dic5.12Q16φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).4C4320,268
(Q8xC10).5C4 = Q8xC5:C8φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).5C4320,1124
(Q8xC10).6C4 = (C2xQ8).5F5φ: C4/C1C4 ⊆ Out Q8xC10160(Q8xC10).6C4320,1125
(Q8xC10).7C4 = C20.6M4(2)φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).7C4320,1126
(Q8xC10).8C4 = (C2xQ8).7F5φ: C4/C1C4 ⊆ Out Q8xC10808-(Q8xC10).8C4320,1127
(Q8xC10).9C4 = C2xQ8.F5φ: C4/C1C4 ⊆ Out Q8xC10160(Q8xC10).9C4320,1597
(Q8xC10).10C4 = Dic5.20C24φ: C4/C1C4 ⊆ Out Q8xC10808+(Q8xC10).10C4320,1598
(Q8xC10).11C4 = C42.7D10φ: C4/C1C4 ⊆ Out Q8xC10160(Q8xC10).11C4320,98
(Q8xC10).12C4 = C20.5Q16φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).12C4320,104
(Q8xC10).13C4 = C42.3Dic5φ: C4/C1C4 ⊆ Out Q8xC10804(Q8xC10).13C4320,106
(Q8xC10).14C4 = C5xC42.C22φ: C4/C1C4 ⊆ Out Q8xC10160(Q8xC10).14C4320,134
(Q8xC10).15C4 = C5xC4.6Q16φ: C4/C1C4 ⊆ Out Q8xC10320(Q8xC10).15C4320,138
(Q8xC10).16C4 = C5xC42.3C4φ: C4/C1C4 ⊆ Out Q8xC10804(Q8xC10).16C4320,161
(Q8xC10).17C4 = C20.26Q16φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10).17C4320,93
(Q8xC10).18C4 = Q8xC5:2C8φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10).18C4320,650
(Q8xC10).19C4 = C42.210D10φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10).19C4320,651
(Q8xC10).20C4 = C2xC20.10D4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10).20C4320,853
(Q8xC10).21C4 = (D4xC10).24C4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10).21C4320,861
(Q8xC10).22C4 = C2xD4.Dic5φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10).22C4320,1490
(Q8xC10).23C4 = C20.76C24φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10).23C4320,1491
(Q8xC10).24C4 = C5xQ8:C8φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10).24C4320,131
(Q8xC10).25C4 = C5x(C22xC8):C2φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10).25C4320,909
(Q8xC10).26C4 = C10xC4.10D4φ: C4/C2C2 ⊆ Out Q8xC10160(Q8xC10).26C4320,913
(Q8xC10).27C4 = C5xC8:4Q8φ: C4/C2C2 ⊆ Out Q8xC10320(Q8xC10).27C4320,947
(Q8xC10).28C4 = C5xQ8oM4(2)φ: C4/C2C2 ⊆ Out Q8xC10804(Q8xC10).28C4320,1570
(Q8xC10).29C4 = Q8xC40φ: trivial image320(Q8xC10).29C4320,946
(Q8xC10).30C4 = C10xC8oD4φ: trivial image160(Q8xC10).30C4320,1569

׿
x
:
Z
F
o
wr
Q
<