Copied to
clipboard

G = C2xQ8xF5order 320 = 26·5

Direct product of C2, Q8 and F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xQ8xF5, D10.16C24, D5:(C4xQ8), C10:(C4xQ8), (Q8xD5):10C4, (Q8xC10):9C4, Dic10:7(C2xC4), D10.28(C2xQ8), C4:F5.11C22, (C2xF5).5C23, C2.14(C23xF5), C4.30(C22xF5), (C2xDic10):13C4, D5.2(C22xQ8), C20.30(C22xC4), C10.13(C23xC4), (C4xD5).53C23, (C4xF5).15C22, D10.58(C4oD4), (Q8xD5).14C22, D10.48(C22xC4), Dic5.4(C22xC4), C22.59(C22xF5), (C22xF5).25C22, (C22xD5).285C23, C5:(C2xC4xQ8), (C2xC4xF5).6C2, (C5xQ8):7(C2xC4), (C2xC4:F5).7C2, (C2xQ8xD5).13C2, D5.3(C2xC4oD4), (C2xC4).93(C2xF5), (C2xC20).74(C2xC4), (C4xD5).35(C2xC4), (C2xC4xD5).220C22, (C2xDic5).82(C2xC4), (C2xC10).103(C22xC4), SmallGroup(320,1599)

Series: Derived Chief Lower central Upper central

C1C10 — C2xQ8xF5
C1C5D5D10C2xF5C22xF5C2xC4xF5 — C2xQ8xF5
C5C10 — C2xQ8xF5
C1C22C2xQ8

Generators and relations for C2xQ8xF5
 G = < a,b,c,d,e | a2=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 890 in 298 conjugacy classes, 156 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, Q8, Q8, C23, D5, D5, C10, C10, C42, C4:C4, C22xC4, C2xQ8, C2xQ8, Dic5, C20, F5, F5, D10, D10, C2xC10, C2xC42, C2xC4:C4, C4xQ8, C22xQ8, Dic10, C4xD5, C2xDic5, C2xC20, C5xQ8, C2xF5, C2xF5, C22xD5, C2xC4xQ8, C4xF5, C4:F5, C2xDic10, C2xC4xD5, Q8xD5, Q8xC10, C22xF5, C22xF5, C2xC4xF5, C2xC4:F5, Q8xF5, C2xQ8xD5, C2xQ8xF5
Quotients: C1, C2, C4, C22, C2xC4, Q8, C23, C22xC4, C2xQ8, C4oD4, C24, F5, C4xQ8, C23xC4, C22xQ8, C2xC4oD4, C2xF5, C2xC4xQ8, C22xF5, Q8xF5, C23xF5, C2xQ8xF5

Smallest permutation representation of C2xQ8xF5
On 80 points
Generators in S80
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)
(1 66 6 61)(2 67 7 62)(3 68 8 63)(4 69 9 64)(5 70 10 65)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 41 26 46)(22 42 27 47)(23 43 28 48)(24 44 29 49)(25 45 30 50)(31 51 36 56)(32 52 37 57)(33 53 38 58)(34 54 39 59)(35 55 40 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 36 6 31)(2 38 10 34)(3 40 9 32)(4 37 8 35)(5 39 7 33)(11 26 16 21)(12 28 20 24)(13 30 19 22)(14 27 18 25)(15 29 17 23)(41 76 46 71)(42 78 50 74)(43 80 49 72)(44 77 48 75)(45 79 47 73)(51 66 56 61)(52 68 60 64)(53 70 59 62)(54 67 58 65)(55 69 57 63)

G:=sub<Sym(80)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50)(31,51,36,56)(32,52,37,57)(33,53,38,58)(34,54,39,59)(35,55,40,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,36,6,31)(2,38,10,34)(3,40,9,32)(4,37,8,35)(5,39,7,33)(11,26,16,21)(12,28,20,24)(13,30,19,22)(14,27,18,25)(15,29,17,23)(41,76,46,71)(42,78,50,74)(43,80,49,72)(44,77,48,75)(45,79,47,73)(51,66,56,61)(52,68,60,64)(53,70,59,62)(54,67,58,65)(55,69,57,63)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,66,6,61)(2,67,7,62)(3,68,8,63)(4,69,9,64)(5,70,10,65)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,41,26,46)(22,42,27,47)(23,43,28,48)(24,44,29,49)(25,45,30,50)(31,51,36,56)(32,52,37,57)(33,53,38,58)(34,54,39,59)(35,55,40,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,36,6,31)(2,38,10,34)(3,40,9,32)(4,37,8,35)(5,39,7,33)(11,26,16,21)(12,28,20,24)(13,30,19,22)(14,27,18,25)(15,29,17,23)(41,76,46,71)(42,78,50,74)(43,80,49,72)(44,77,48,75)(45,79,47,73)(51,66,56,61)(52,68,60,64)(53,70,59,62)(54,67,58,65)(55,69,57,63) );

G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80)], [(1,66,6,61),(2,67,7,62),(3,68,8,63),(4,69,9,64),(5,70,10,65),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,41,26,46),(22,42,27,47),(23,43,28,48),(24,44,29,49),(25,45,30,50),(31,51,36,56),(32,52,37,57),(33,53,38,58),(34,54,39,59),(35,55,40,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,36,6,31),(2,38,10,34),(3,40,9,32),(4,37,8,35),(5,39,7,33),(11,26,16,21),(12,28,20,24),(13,30,19,22),(14,27,18,25),(15,29,17,23),(41,76,46,71),(42,78,50,74),(43,80,49,72),(44,77,48,75),(45,79,47,73),(51,66,56,61),(52,68,60,64),(53,70,59,62),(54,67,58,65),(55,69,57,63)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4N4O···4AF 5 10A10B10C20A···20F
order122222224···44···44···4510101020···20
size111155552···25···510···1044448···8

50 irreducible representations

dim11111111224448
type+++++-+++-
imageC1C2C2C2C2C4C4C4Q8C4oD4F5C2xF5C2xF5Q8xF5
kernelC2xQ8xF5C2xC4xF5C2xC4:F5Q8xF5C2xQ8xD5C2xDic10Q8xD5Q8xC10C2xF5D10C2xQ8C2xC4Q8C2
# reps13381682441342

Matrix representation of C2xQ8xF5 in GL6(F41)

4000000
0400000
0040000
0004000
0000400
0000040
,
4020000
4010000
0040000
0004000
0000400
0000040
,
9230000
0320000
001000
000100
000010
000001
,
100000
010000
0000040
0010040
0001040
0000140
,
4000000
0400000
000010
001000
000001
000100

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,23,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

C2xQ8xF5 in GAP, Magma, Sage, TeX

C_2\times Q_8\times F_5
% in TeX

G:=Group("C2xQ8xF5");
// GroupNames label

G:=SmallGroup(320,1599);
// by ID

G=gap.SmallGroup(320,1599);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,297,136,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<