Copied to
clipboard

G = C2xD10.12D4order 320 = 26·5

Direct product of C2 and D10.12D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD10.12D4, C24.25D10, C22:C4:38D10, D10.70(C2xD4), (C2xC10).32C24, C4:Dic5:51C22, C10.35(C22xD4), C22.126(D4xD5), (C2xC20).572C23, (C22xD5).131D4, (C22xC4).313D10, C23.D5:45C22, D10:C4:45C22, C22.71(C23xD5), C23.79(C22xD5), C22.72(C4oD20), C10.D4:59C22, C10:1(C22.D4), (C23xC10).58C22, C22.67(D4:2D5), (C22xC20).352C22, (C22xC10).124C23, (C2xDic5).188C23, (C23xD5).107C22, (C22xD5).161C23, (C22xDic5).227C22, C2.9(C2xD4xD5), (C2xC4xD5):65C22, (D5xC22xC4):17C2, (C2xC4:Dic5):19C2, (C2xC22:C4):11D5, C10.12(C2xC4oD4), C2.14(C2xC4oD20), C2.9(C2xD4:2D5), (C10xC22:C4):16C2, C5:1(C2xC22.D4), (C2xC10).381(C2xD4), (C2xC23.D5):16C2, (C2xD10:C4):17C2, (C2xC10.D4):36C2, (C5xC22:C4):51C22, (C2xC4).258(C22xD5), (C2xC5:D4).97C22, (C22xC5:D4).10C2, (C2xC10).101(C4oD4), SmallGroup(320,1160)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C2xD10.12D4
C1C5C10C2xC10C22xD5C23xD5D5xC22xC4 — C2xD10.12D4
C5C2xC10 — C2xD10.12D4
C1C23C2xC22:C4

Generators and relations for C2xD10.12D4
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b5c, ce=ec, ede-1=b5d-1 >

Subgroups: 1214 in 342 conjugacy classes, 119 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, C23, D5, C10, C10, C10, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C24, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC10, C2xC22:C4, C2xC22:C4, C2xC4:C4, C22.D4, C23xC4, C22xD4, C4xD5, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xD5, C22xC10, C22xC10, C22xC10, C2xC22.D4, C10.D4, C4:Dic5, D10:C4, C23.D5, C5xC22:C4, C2xC4xD5, C2xC4xD5, C22xDic5, C2xC5:D4, C2xC5:D4, C22xC20, C23xD5, C23xC10, D10.12D4, C2xC10.D4, C2xC4:Dic5, C2xD10:C4, C2xC23.D5, C10xC22:C4, D5xC22xC4, C22xC5:D4, C2xD10.12D4
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C4oD4, C24, D10, C22.D4, C22xD4, C2xC4oD4, C22xD5, C2xC22.D4, C4oD20, D4xD5, D4:2D5, C23xD5, D10.12D4, C2xC4oD20, C2xD4xD5, C2xD4:2D5, C2xD10.12D4

Smallest permutation representation of C2xD10.12D4
On 160 points
Generators in S160
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 101)(8 102)(9 103)(10 104)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 71)(19 72)(20 73)(21 100)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 122)(32 123)(33 124)(34 125)(35 126)(36 127)(37 128)(38 129)(39 130)(40 121)(41 120)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 148)(58 149)(59 150)(60 141)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(81 160)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104)(2 103)(3 102)(4 101)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 78)(12 77)(13 76)(14 75)(15 74)(16 73)(17 72)(18 71)(19 80)(20 79)(21 97)(22 96)(23 95)(24 94)(25 93)(26 92)(27 91)(28 100)(29 99)(30 98)(31 122)(32 121)(33 130)(34 129)(35 128)(36 127)(37 126)(38 125)(39 124)(40 123)(41 112)(42 111)(43 120)(44 119)(45 118)(46 117)(47 116)(48 115)(49 114)(50 113)(51 147)(52 146)(53 145)(54 144)(55 143)(56 142)(57 141)(58 150)(59 149)(60 148)(61 137)(62 136)(63 135)(64 134)(65 133)(66 132)(67 131)(68 140)(69 139)(70 138)(81 152)(82 151)(83 160)(84 159)(85 158)(86 157)(87 156)(88 155)(89 154)(90 153)
(1 16 30 154)(2 17 21 155)(3 18 22 156)(4 19 23 157)(5 20 24 158)(6 11 25 159)(7 12 26 160)(8 13 27 151)(9 14 28 152)(10 15 29 153)(31 147 47 131)(32 148 48 132)(33 149 49 133)(34 150 50 134)(35 141 41 135)(36 142 42 136)(37 143 43 137)(38 144 44 138)(39 145 45 139)(40 146 46 140)(51 111 67 127)(52 112 68 128)(53 113 69 129)(54 114 70 130)(55 115 61 121)(56 116 62 122)(57 117 63 123)(58 118 64 124)(59 119 65 125)(60 120 66 126)(71 91 87 107)(72 92 88 108)(73 93 89 109)(74 94 90 110)(75 95 81 101)(76 96 82 102)(77 97 83 103)(78 98 84 104)(79 99 85 105)(80 100 86 106)
(1 59 6 54)(2 60 7 55)(3 51 8 56)(4 52 9 57)(5 53 10 58)(11 125 16 130)(12 126 17 121)(13 127 18 122)(14 128 19 123)(15 129 20 124)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)(41 86 46 81)(42 87 47 82)(43 88 48 83)(44 89 49 84)(45 90 50 85)(91 136 96 131)(92 137 97 132)(93 138 98 133)(94 139 99 134)(95 140 100 135)(101 146 106 141)(102 147 107 142)(103 148 108 143)(104 149 109 144)(105 150 110 145)(111 156 116 151)(112 157 117 152)(113 158 118 153)(114 159 119 154)(115 160 120 155)

G:=sub<Sym(160)| (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,80)(20,79)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,100)(29,99)(30,98)(31,122)(32,121)(33,130)(34,129)(35,128)(36,127)(37,126)(38,125)(39,124)(40,123)(41,112)(42,111)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,150)(59,149)(60,148)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,140)(69,139)(70,138)(81,152)(82,151)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153), (1,16,30,154)(2,17,21,155)(3,18,22,156)(4,19,23,157)(5,20,24,158)(6,11,25,159)(7,12,26,160)(8,13,27,151)(9,14,28,152)(10,15,29,153)(31,147,47,131)(32,148,48,132)(33,149,49,133)(34,150,50,134)(35,141,41,135)(36,142,42,136)(37,143,43,137)(38,144,44,138)(39,145,45,139)(40,146,46,140)(51,111,67,127)(52,112,68,128)(53,113,69,129)(54,114,70,130)(55,115,61,121)(56,116,62,122)(57,117,63,123)(58,118,64,124)(59,119,65,125)(60,120,66,126)(71,91,87,107)(72,92,88,108)(73,93,89,109)(74,94,90,110)(75,95,81,101)(76,96,82,102)(77,97,83,103)(78,98,84,104)(79,99,85,105)(80,100,86,106), (1,59,6,54)(2,60,7,55)(3,51,8,56)(4,52,9,57)(5,53,10,58)(11,125,16,130)(12,126,17,121)(13,127,18,122)(14,128,19,123)(15,129,20,124)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,86,46,81)(42,87,47,82)(43,88,48,83)(44,89,49,84)(45,90,50,85)(91,136,96,131)(92,137,97,132)(93,138,98,133)(94,139,99,134)(95,140,100,135)(101,146,106,141)(102,147,107,142)(103,148,108,143)(104,149,109,144)(105,150,110,145)(111,156,116,151)(112,157,117,152)(113,158,118,153)(114,159,119,154)(115,160,120,155)>;

G:=Group( (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,80)(20,79)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,100)(29,99)(30,98)(31,122)(32,121)(33,130)(34,129)(35,128)(36,127)(37,126)(38,125)(39,124)(40,123)(41,112)(42,111)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,150)(59,149)(60,148)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,140)(69,139)(70,138)(81,152)(82,151)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153), (1,16,30,154)(2,17,21,155)(3,18,22,156)(4,19,23,157)(5,20,24,158)(6,11,25,159)(7,12,26,160)(8,13,27,151)(9,14,28,152)(10,15,29,153)(31,147,47,131)(32,148,48,132)(33,149,49,133)(34,150,50,134)(35,141,41,135)(36,142,42,136)(37,143,43,137)(38,144,44,138)(39,145,45,139)(40,146,46,140)(51,111,67,127)(52,112,68,128)(53,113,69,129)(54,114,70,130)(55,115,61,121)(56,116,62,122)(57,117,63,123)(58,118,64,124)(59,119,65,125)(60,120,66,126)(71,91,87,107)(72,92,88,108)(73,93,89,109)(74,94,90,110)(75,95,81,101)(76,96,82,102)(77,97,83,103)(78,98,84,104)(79,99,85,105)(80,100,86,106), (1,59,6,54)(2,60,7,55)(3,51,8,56)(4,52,9,57)(5,53,10,58)(11,125,16,130)(12,126,17,121)(13,127,18,122)(14,128,19,123)(15,129,20,124)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,86,46,81)(42,87,47,82)(43,88,48,83)(44,89,49,84)(45,90,50,85)(91,136,96,131)(92,137,97,132)(93,138,98,133)(94,139,99,134)(95,140,100,135)(101,146,106,141)(102,147,107,142)(103,148,108,143)(104,149,109,144)(105,150,110,145)(111,156,116,151)(112,157,117,152)(113,158,118,153)(114,159,119,154)(115,160,120,155) );

G=PermutationGroup([[(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,101),(8,102),(9,103),(10,104),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,71),(19,72),(20,73),(21,100),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,122),(32,123),(33,124),(34,125),(35,126),(36,127),(37,128),(38,129),(39,130),(40,121),(41,120),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,148),(58,149),(59,150),(60,141),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(81,160),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104),(2,103),(3,102),(4,101),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,78),(12,77),(13,76),(14,75),(15,74),(16,73),(17,72),(18,71),(19,80),(20,79),(21,97),(22,96),(23,95),(24,94),(25,93),(26,92),(27,91),(28,100),(29,99),(30,98),(31,122),(32,121),(33,130),(34,129),(35,128),(36,127),(37,126),(38,125),(39,124),(40,123),(41,112),(42,111),(43,120),(44,119),(45,118),(46,117),(47,116),(48,115),(49,114),(50,113),(51,147),(52,146),(53,145),(54,144),(55,143),(56,142),(57,141),(58,150),(59,149),(60,148),(61,137),(62,136),(63,135),(64,134),(65,133),(66,132),(67,131),(68,140),(69,139),(70,138),(81,152),(82,151),(83,160),(84,159),(85,158),(86,157),(87,156),(88,155),(89,154),(90,153)], [(1,16,30,154),(2,17,21,155),(3,18,22,156),(4,19,23,157),(5,20,24,158),(6,11,25,159),(7,12,26,160),(8,13,27,151),(9,14,28,152),(10,15,29,153),(31,147,47,131),(32,148,48,132),(33,149,49,133),(34,150,50,134),(35,141,41,135),(36,142,42,136),(37,143,43,137),(38,144,44,138),(39,145,45,139),(40,146,46,140),(51,111,67,127),(52,112,68,128),(53,113,69,129),(54,114,70,130),(55,115,61,121),(56,116,62,122),(57,117,63,123),(58,118,64,124),(59,119,65,125),(60,120,66,126),(71,91,87,107),(72,92,88,108),(73,93,89,109),(74,94,90,110),(75,95,81,101),(76,96,82,102),(77,97,83,103),(78,98,84,104),(79,99,85,105),(80,100,86,106)], [(1,59,6,54),(2,60,7,55),(3,51,8,56),(4,52,9,57),(5,53,10,58),(11,125,16,130),(12,126,17,121),(13,127,18,122),(14,128,19,123),(15,129,20,124),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75),(41,86,46,81),(42,87,47,82),(43,88,48,83),(44,89,49,84),(45,90,50,85),(91,136,96,131),(92,137,97,132),(93,138,98,133),(94,139,99,134),(95,140,100,135),(101,146,106,141),(102,147,107,142),(103,148,108,143),(104,149,109,144),(105,150,110,145),(111,156,116,151),(112,157,117,152),(113,158,118,153),(114,159,119,154),(115,160,120,155)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B10A···10N10O···10V20A···20P
order12···2222222444444444444445510···1010···1020···20
size11···144101010102222441010101020202020222···24···44···4

68 irreducible representations

dim111111111222222244
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2C2D4D5C4oD4D10D10D10C4oD20D4xD5D4:2D5
kernelC2xD10.12D4D10.12D4C2xC10.D4C2xC4:Dic5C2xD10:C4C2xC23.D5C10xC22:C4D5xC22xC4C22xC5:D4C22xD5C2xC22:C4C2xC10C22:C4C22xC4C24C22C22C22
# reps1811111114288421644

Matrix representation of C2xD10.12D4 in GL6(F41)

4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
0400000
00403400
007700
0000400
0000040
,
100000
0400000
001700
0004000
000010
00004040
,
0320000
3200000
0040000
0004000
00003223
000099
,
900000
090000
0040000
0004000
0000320
000099

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,9,0,0,0,0,23,9],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,9,0,0,0,0,0,9] >;

C2xD10.12D4 in GAP, Magma, Sage, TeX

C_2\times D_{10}._{12}D_4
% in TeX

G:=Group("C2xD10.12D4");
// GroupNames label

G:=SmallGroup(320,1160);
// by ID

G=gap.SmallGroup(320,1160);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^5*c,c*e=e*c,e*d*e^-1=b^5*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<