metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4:C4:26D10, (C4xD5):13D4, (C2xQ8):15D10, C4.186(D4xD5), C22:Q8:26D5, D10:4(C4oD4), C4:D20:23C2, C20:7D4:35C2, D10.76(C2xD4), C20.231(C2xD4), D20:8C4:24C2, C22:D20:15C2, (Q8xC10):6C22, D10:3Q8:13C2, (C2xD20):24C22, C4:Dic5:35C22, C22:C4.56D10, C10.73(C22xD4), Dic5:4D4:14C2, (C2xC20).598C23, (C2xC10).171C24, Dic5.119(C2xD4), C5:5(C22.19C24), C22:1(Q8:2D5), (C4xDic5):27C22, (C22xC4).372D10, D10.13D4:15C2, D10:C4:19C22, C10.D4:17C22, (C2xDic5).86C23, C23.188(C22xD5), C22.192(C23xD5), (C22xC20).251C22, (C22xC10).199C23, (C22xD5).203C23, (C23xD5).121C22, (C22xDic5).248C22, C2.46(C2xD4xD5), (D5xC22xC4):5C2, C2.48(D5xC4oD4), (C2xC4xD5):17C22, C4:C4:7D5:24C2, (C5xC22:Q8):7C2, (C2xC10):6(C4oD4), (C5xC4:C4):18C22, (C2xQ8:2D5):5C2, C10.160(C2xC4oD4), C2.16(C2xQ8:2D5), (C2xC4).46(C22xD5), (C2xC5:D4).38C22, (C5xC22:C4).26C22, SmallGroup(320,1299)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4:C4:26D10
G = < a,b,c,d | a4=b4=c10=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b-1, dbd=a2b, dcd=c-1 >
Subgroups: 1294 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D5, C10, C10, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xC10, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22:Q8, C22.D4, C23xC4, C2xC4oD4, C4xD5, C4xD5, D20, C2xDic5, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C2xC20, C5xQ8, C22xD5, C22xD5, C22xD5, C22xC10, C22.19C24, C4xDic5, C10.D4, C4:Dic5, D10:C4, C5xC22:C4, C5xC4:C4, C5xC4:C4, C2xC4xD5, C2xC4xD5, C2xC4xD5, C2xD20, C2xD20, Q8:2D5, C22xDic5, C2xC5:D4, C22xC20, Q8xC10, C23xD5, Dic5:4D4, C22:D20, C4:C4:7D5, D20:8C4, D10.13D4, C4:D20, C20:7D4, D10:3Q8, C5xC22:Q8, D5xC22xC4, C2xQ8:2D5, C4:C4:26D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C4oD4, C24, D10, C22xD4, C2xC4oD4, C22xD5, C22.19C24, D4xD5, Q8:2D5, C23xD5, C2xD4xD5, C2xQ8:2D5, D5xC4oD4, C4:C4:26D10
(1 53 13 43)(2 54 14 44)(3 55 15 45)(4 56 16 46)(5 57 17 47)(6 58 18 48)(7 59 19 49)(8 60 20 50)(9 51 11 41)(10 52 12 42)(21 77 26 72)(22 78 27 73)(23 79 28 74)(24 80 29 75)(25 71 30 76)(31 65 36 70)(32 66 37 61)(33 67 38 62)(34 68 39 63)(35 69 40 64)
(1 33 6 27)(2 23 7 39)(3 35 8 29)(4 25 9 31)(5 37 10 21)(11 36 16 30)(12 26 17 32)(13 38 18 22)(14 28 19 34)(15 40 20 24)(41 65 46 71)(42 77 47 61)(43 67 48 73)(44 79 49 63)(45 69 50 75)(51 70 56 76)(52 72 57 66)(53 62 58 78)(54 74 59 68)(55 64 60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 14)(12 13)(15 20)(16 19)(17 18)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 40)(30 39)(41 44)(42 43)(45 50)(46 49)(47 48)(51 54)(52 53)(55 60)(56 59)(57 58)(61 78)(62 77)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 80)(70 79)
G:=sub<Sym(80)| (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,77,26,72)(22,78,27,73)(23,79,28,74)(24,80,29,75)(25,71,30,76)(31,65,36,70)(32,66,37,61)(33,67,38,62)(34,68,39,63)(35,69,40,64), (1,33,6,27)(2,23,7,39)(3,35,8,29)(4,25,9,31)(5,37,10,21)(11,36,16,30)(12,26,17,32)(13,38,18,22)(14,28,19,34)(15,40,20,24)(41,65,46,71)(42,77,47,61)(43,67,48,73)(44,79,49,63)(45,69,50,75)(51,70,56,76)(52,72,57,66)(53,62,58,78)(54,74,59,68)(55,64,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,80)(70,79)>;
G:=Group( (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,77,26,72)(22,78,27,73)(23,79,28,74)(24,80,29,75)(25,71,30,76)(31,65,36,70)(32,66,37,61)(33,67,38,62)(34,68,39,63)(35,69,40,64), (1,33,6,27)(2,23,7,39)(3,35,8,29)(4,25,9,31)(5,37,10,21)(11,36,16,30)(12,26,17,32)(13,38,18,22)(14,28,19,34)(15,40,20,24)(41,65,46,71)(42,77,47,61)(43,67,48,73)(44,79,49,63)(45,69,50,75)(51,70,56,76)(52,72,57,66)(53,62,58,78)(54,74,59,68)(55,64,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,78)(62,77)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,80)(70,79) );
G=PermutationGroup([[(1,53,13,43),(2,54,14,44),(3,55,15,45),(4,56,16,46),(5,57,17,47),(6,58,18,48),(7,59,19,49),(8,60,20,50),(9,51,11,41),(10,52,12,42),(21,77,26,72),(22,78,27,73),(23,79,28,74),(24,80,29,75),(25,71,30,76),(31,65,36,70),(32,66,37,61),(33,67,38,62),(34,68,39,63),(35,69,40,64)], [(1,33,6,27),(2,23,7,39),(3,35,8,29),(4,25,9,31),(5,37,10,21),(11,36,16,30),(12,26,17,32),(13,38,18,22),(14,28,19,34),(15,40,20,24),(41,65,46,71),(42,77,47,61),(43,67,48,73),(44,79,49,63),(45,69,50,75),(51,70,56,76),(52,72,57,66),(53,62,58,78),(54,74,59,68),(55,64,60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13),(15,20),(16,19),(17,18),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,40),(30,39),(41,44),(42,43),(45,50),(46,49),(47,48),(51,54),(52,53),(55,60),(56,59),(57,58),(61,78),(62,77),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,80),(70,79)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4oD4 | C4oD4 | D10 | D10 | D10 | D10 | D4xD5 | Q8:2D5 | D5xC4oD4 |
kernel | C4:C4:26D10 | Dic5:4D4 | C22:D20 | C4:C4:7D5 | D20:8C4 | D10.13D4 | C4:D20 | C20:7D4 | D10:3Q8 | C5xC22:Q8 | D5xC22xC4 | C2xQ8:2D5 | C4xD5 | C22:Q8 | D10 | C2xC10 | C22:C4 | C4:C4 | C22xC4 | C2xQ8 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 4 | 4 | 6 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of C4:C4:26D10 ►in GL6(F41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 39 | 0 | 0 |
0 | 0 | 1 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
34 | 35 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 1 | 0 | 0 | 0 | 0 |
34 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,32,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,39,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[34,7,0,0,0,0,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[7,34,0,0,0,0,1,34,0,0,0,0,0,0,40,40,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
C4:C4:26D10 in GAP, Magma, Sage, TeX
C_4\rtimes C_4\rtimes_{26}D_{10}
% in TeX
G:=Group("C4:C4:26D10");
// GroupNames label
G:=SmallGroup(320,1299);
// by ID
G=gap.SmallGroup(320,1299);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,1123,794,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations