metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20:9Q8, C42.175D10, C10.832+ 1+4, C4:Q8:13D5, C4.19(Q8xD5), C5:8(D4:3Q8), C20.56(C2xQ8), C4:C4.220D10, (C4xD20).27C2, D10.24(C2xQ8), (C2xQ8).87D10, D10:2Q8:44C2, D10:3Q8:37C2, (C4xDic10):53C2, C4.Dic10:44C2, D20:8C4.14C2, C20.137(C4oD4), C10.50(C22xQ8), (C2xC10).274C24, (C4xC20).215C22, (C2xC20).107C23, C4.40(Q8:2D5), C2.87(D4:6D10), (C2xD20).281C22, C4:Dic5.253C22, (Q8xC10).141C22, C22.295(C23xD5), (C4xDic5).171C22, (C2xDic5).145C23, C10.D4.62C22, (C22xD5).245C23, D10:C4.153C22, (C2xDic10).311C22, (D5xC4:C4):45C2, C2.33(C2xQ8xD5), (C5xC4:Q8):16C2, C10.122(C2xC4oD4), C2.30(C2xQ8:2D5), (C2xC4xD5).156C22, (C5xC4:C4).217C22, (C2xC4).220(C22xD5), SmallGroup(320,1402)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20:9Q8
G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=a-1, cac-1=a11, ad=da, cbc-1=dbd-1=a10b, dcd-1=c-1 >
Subgroups: 774 in 228 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, Q8, C23, D5, C10, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, Dic5, C20, C20, D10, D10, C2xC10, C2xC4:C4, C4xD4, C4xQ8, C22:Q8, C42.C2, C4:Q8, Dic10, C4xD5, D20, C2xDic5, C2xC20, C2xC20, C5xQ8, C22xD5, D4:3Q8, C4xDic5, C10.D4, C4:Dic5, C4:Dic5, D10:C4, C4xC20, C5xC4:C4, C2xDic10, C2xC4xD5, C2xD20, Q8xC10, C4xDic10, C4xD20, C4.Dic10, D5xC4:C4, D20:8C4, D10:2Q8, D10:3Q8, C5xC4:Q8, D20:9Q8
Quotients: C1, C2, C22, Q8, C23, D5, C2xQ8, C4oD4, C24, D10, C22xQ8, C2xC4oD4, 2+ 1+4, C22xD5, D4:3Q8, Q8xD5, Q8:2D5, C23xD5, D4:6D10, C2xQ8xD5, C2xQ8:2D5, D20:9Q8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(36 40)(37 39)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(56 60)(57 59)(61 63)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)(81 85)(82 84)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)(101 113)(102 112)(103 111)(104 110)(105 109)(106 108)(114 120)(115 119)(116 118)(121 131)(122 130)(123 129)(124 128)(125 127)(132 140)(133 139)(134 138)(135 137)(141 153)(142 152)(143 151)(144 150)(145 149)(146 148)(154 160)(155 159)(156 158)
(1 134 120 155)(2 125 101 146)(3 136 102 157)(4 127 103 148)(5 138 104 159)(6 129 105 150)(7 140 106 141)(8 131 107 152)(9 122 108 143)(10 133 109 154)(11 124 110 145)(12 135 111 156)(13 126 112 147)(14 137 113 158)(15 128 114 149)(16 139 115 160)(17 130 116 151)(18 121 117 142)(19 132 118 153)(20 123 119 144)(21 91 65 56)(22 82 66 47)(23 93 67 58)(24 84 68 49)(25 95 69 60)(26 86 70 51)(27 97 71 42)(28 88 72 53)(29 99 73 44)(30 90 74 55)(31 81 75 46)(32 92 76 57)(33 83 77 48)(34 94 78 59)(35 85 79 50)(36 96 80 41)(37 87 61 52)(38 98 62 43)(39 89 63 54)(40 100 64 45)
(1 80 120 36)(2 61 101 37)(3 62 102 38)(4 63 103 39)(5 64 104 40)(6 65 105 21)(7 66 106 22)(8 67 107 23)(9 68 108 24)(10 69 109 25)(11 70 110 26)(12 71 111 27)(13 72 112 28)(14 73 113 29)(15 74 114 30)(16 75 115 31)(17 76 116 32)(18 77 117 33)(19 78 118 34)(20 79 119 35)(41 134 96 155)(42 135 97 156)(43 136 98 157)(44 137 99 158)(45 138 100 159)(46 139 81 160)(47 140 82 141)(48 121 83 142)(49 122 84 143)(50 123 85 144)(51 124 86 145)(52 125 87 146)(53 126 88 147)(54 127 89 148)(55 128 90 149)(56 129 91 150)(57 130 92 151)(58 131 93 152)(59 132 94 153)(60 133 95 154)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59)(61,63)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,113)(102,112)(103,111)(104,110)(105,109)(106,108)(114,120)(115,119)(116,118)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,160)(155,159)(156,158), (1,134,120,155)(2,125,101,146)(3,136,102,157)(4,127,103,148)(5,138,104,159)(6,129,105,150)(7,140,106,141)(8,131,107,152)(9,122,108,143)(10,133,109,154)(11,124,110,145)(12,135,111,156)(13,126,112,147)(14,137,113,158)(15,128,114,149)(16,139,115,160)(17,130,116,151)(18,121,117,142)(19,132,118,153)(20,123,119,144)(21,91,65,56)(22,82,66,47)(23,93,67,58)(24,84,68,49)(25,95,69,60)(26,86,70,51)(27,97,71,42)(28,88,72,53)(29,99,73,44)(30,90,74,55)(31,81,75,46)(32,92,76,57)(33,83,77,48)(34,94,78,59)(35,85,79,50)(36,96,80,41)(37,87,61,52)(38,98,62,43)(39,89,63,54)(40,100,64,45), (1,80,120,36)(2,61,101,37)(3,62,102,38)(4,63,103,39)(5,64,104,40)(6,65,105,21)(7,66,106,22)(8,67,107,23)(9,68,108,24)(10,69,109,25)(11,70,110,26)(12,71,111,27)(13,72,112,28)(14,73,113,29)(15,74,114,30)(16,75,115,31)(17,76,116,32)(18,77,117,33)(19,78,118,34)(20,79,119,35)(41,134,96,155)(42,135,97,156)(43,136,98,157)(44,137,99,158)(45,138,100,159)(46,139,81,160)(47,140,82,141)(48,121,83,142)(49,122,84,143)(50,123,85,144)(51,124,86,145)(52,125,87,146)(53,126,88,147)(54,127,89,148)(55,128,90,149)(56,129,91,150)(57,130,92,151)(58,131,93,152)(59,132,94,153)(60,133,95,154)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59)(61,63)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,113)(102,112)(103,111)(104,110)(105,109)(106,108)(114,120)(115,119)(116,118)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(154,160)(155,159)(156,158), (1,134,120,155)(2,125,101,146)(3,136,102,157)(4,127,103,148)(5,138,104,159)(6,129,105,150)(7,140,106,141)(8,131,107,152)(9,122,108,143)(10,133,109,154)(11,124,110,145)(12,135,111,156)(13,126,112,147)(14,137,113,158)(15,128,114,149)(16,139,115,160)(17,130,116,151)(18,121,117,142)(19,132,118,153)(20,123,119,144)(21,91,65,56)(22,82,66,47)(23,93,67,58)(24,84,68,49)(25,95,69,60)(26,86,70,51)(27,97,71,42)(28,88,72,53)(29,99,73,44)(30,90,74,55)(31,81,75,46)(32,92,76,57)(33,83,77,48)(34,94,78,59)(35,85,79,50)(36,96,80,41)(37,87,61,52)(38,98,62,43)(39,89,63,54)(40,100,64,45), (1,80,120,36)(2,61,101,37)(3,62,102,38)(4,63,103,39)(5,64,104,40)(6,65,105,21)(7,66,106,22)(8,67,107,23)(9,68,108,24)(10,69,109,25)(11,70,110,26)(12,71,111,27)(13,72,112,28)(14,73,113,29)(15,74,114,30)(16,75,115,31)(17,76,116,32)(18,77,117,33)(19,78,118,34)(20,79,119,35)(41,134,96,155)(42,135,97,156)(43,136,98,157)(44,137,99,158)(45,138,100,159)(46,139,81,160)(47,140,82,141)(48,121,83,142)(49,122,84,143)(50,123,85,144)(51,124,86,145)(52,125,87,146)(53,126,88,147)(54,127,89,148)(55,128,90,149)(56,129,91,150)(57,130,92,151)(58,131,93,152)(59,132,94,153)(60,133,95,154) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(36,40),(37,39),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(56,60),(57,59),(61,63),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73),(81,85),(82,84),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94),(101,113),(102,112),(103,111),(104,110),(105,109),(106,108),(114,120),(115,119),(116,118),(121,131),(122,130),(123,129),(124,128),(125,127),(132,140),(133,139),(134,138),(135,137),(141,153),(142,152),(143,151),(144,150),(145,149),(146,148),(154,160),(155,159),(156,158)], [(1,134,120,155),(2,125,101,146),(3,136,102,157),(4,127,103,148),(5,138,104,159),(6,129,105,150),(7,140,106,141),(8,131,107,152),(9,122,108,143),(10,133,109,154),(11,124,110,145),(12,135,111,156),(13,126,112,147),(14,137,113,158),(15,128,114,149),(16,139,115,160),(17,130,116,151),(18,121,117,142),(19,132,118,153),(20,123,119,144),(21,91,65,56),(22,82,66,47),(23,93,67,58),(24,84,68,49),(25,95,69,60),(26,86,70,51),(27,97,71,42),(28,88,72,53),(29,99,73,44),(30,90,74,55),(31,81,75,46),(32,92,76,57),(33,83,77,48),(34,94,78,59),(35,85,79,50),(36,96,80,41),(37,87,61,52),(38,98,62,43),(39,89,63,54),(40,100,64,45)], [(1,80,120,36),(2,61,101,37),(3,62,102,38),(4,63,103,39),(5,64,104,40),(6,65,105,21),(7,66,106,22),(8,67,107,23),(9,68,108,24),(10,69,109,25),(11,70,110,26),(12,71,111,27),(13,72,112,28),(14,73,113,29),(15,74,114,30),(16,75,115,31),(17,76,116,32),(18,77,117,33),(19,78,118,34),(20,79,119,35),(41,134,96,155),(42,135,97,156),(43,136,98,157),(44,137,99,158),(45,138,100,159),(46,139,81,160),(47,140,82,141),(48,121,83,142),(49,122,84,143),(50,123,85,144),(51,124,86,145),(52,125,87,146),(53,126,88,147),(54,127,89,148),(55,128,90,149),(56,129,91,150),(57,130,92,151),(58,131,93,152),(59,132,94,153),(60,133,95,154)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D5 | C4oD4 | D10 | D10 | D10 | 2+ 1+4 | Q8xD5 | Q8:2D5 | D4:6D10 |
kernel | D20:9Q8 | C4xDic10 | C4xD20 | C4.Dic10 | D5xC4:C4 | D20:8C4 | D10:2Q8 | D10:3Q8 | C5xC4:Q8 | D20 | C4:Q8 | C20 | C42 | C4:C4 | C2xQ8 | C10 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 4 | 2 | 4 | 2 | 8 | 4 | 1 | 4 | 4 | 4 |
Matrix representation of D20:9Q8 ►in GL6(F41)
9 | 23 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 39 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
32 | 18 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 7 |
0 | 0 | 0 | 0 | 7 | 27 |
G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,23,32,0,0,0,0,0,0,35,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[32,0,0,0,0,0,18,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,14,7,0,0,0,0,7,27] >;
D20:9Q8 in GAP, Magma, Sage, TeX
D_{20}\rtimes_9Q_8
% in TeX
G:=Group("D20:9Q8");
// GroupNames label
G:=SmallGroup(320,1402);
// by ID
G=gap.SmallGroup(320,1402);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,100,570,185,192,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations