Copied to
clipboard

G = D5x2+ 1+4order 320 = 26·5

Direct product of D5 and 2+ 1+4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5x2+ 1+4, D20:13C23, C10.15C25, C20.50C24, D10.25C24, Dic10:12C23, Dic5.10C24, C4oD4:10D10, (C2xD4):31D10, (C2xC20):2C23, (C4xD5):3C23, C5:D4:6C23, D4:6D10:9C2, Q8:9(C22xD5), (C5xD4):11C23, D4:10(C22xD5), (D4xD5):17C22, (C2xC10).6C24, D4:8D10:11C2, (Q8xD5):20C22, (C5xQ8):10C23, C4.47(C23xD5), C2.16(D5xC24), C23:2(C22xD5), C5:3(C2x2+ 1+4), C4oD20:12C22, (C2xD20):40C22, (D4xC10):25C22, (C22xC10):2C23, (C2xDic5):6C23, (C22xD5):6C23, D4:2D5:15C22, C22.3(C23xD5), Q8:2D5:15C22, (C23xD5):19C22, (C5x2+ 1+4):4C2, (C2xD4xD5):29C2, (D5xC4oD4):7C2, (C2xC4xD5):36C22, (C2xC4):2(C22xD5), (C5xC4oD4):10C22, (C2xC5:D4):32C22, SmallGroup(320,1622)

Series: Derived Chief Lower central Upper central

C1C10 — D5x2+ 1+4
C1C5C10D10C22xD5C23xD5C2xD4xD5 — D5x2+ 1+4
C5C10 — D5x2+ 1+4
C1C22+ 1+4

Generators and relations for D5x2+ 1+4
 G = < a,b,c,d,e,f | a5=b2=c4=d2=f2=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=c2e >

Subgroups: 3118 in 898 conjugacy classes, 445 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, D5, D5, C10, C10, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, Dic5, C20, D10, D10, D10, C2xC10, C2xC10, C22xD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, Dic10, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C5xQ8, C22xD5, C22xD5, C22xC10, C2x2+ 1+4, C2xC4xD5, C2xD20, C4oD20, D4xD5, D4:2D5, Q8xD5, Q8:2D5, C2xC5:D4, D4xC10, C5xC4oD4, C23xD5, C2xD4xD5, D4:6D10, D5xC4oD4, D4:8D10, C5x2+ 1+4, D5x2+ 1+4
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, C25, C22xD5, C2x2+ 1+4, C23xD5, D5xC24, D5x2+ 1+4

Smallest permutation representation of D5x2+ 1+4
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)
(1 14 9 19)(2 15 10 20)(3 11 6 16)(4 12 7 17)(5 13 8 18)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(11 16)(12 17)(13 18)(14 19)(15 20)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 24 9 29)(2 25 10 30)(3 21 6 26)(4 22 7 27)(5 23 8 28)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,14,9,19)(2,15,10,20)(3,11,6,16)(4,12,7,17)(5,13,8,18)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,14,9,19)(2,15,10,20)(3,11,6,16)(4,12,7,17)(5,13,8,18)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39)], [(1,14,9,19),(2,15,10,20),(3,11,6,16),(4,12,7,17),(5,13,8,18),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(11,16),(12,17),(13,18),(14,19),(15,20),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,24,9,29),(2,25,10,30),(3,21,6,26),(4,22,7,27),(5,23,8,28),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)]])

68 conjugacy classes

class 1 2A2B···2J2K2L2M···2U4A···4F4G···4L5A5B10A10B10C···10T20A···20L
order122···2222···24···44···455101010···1020···20
size112···25510···102···210···1022224···44···4

68 irreducible representations

dim11111122248
type+++++++++++
imageC1C2C2C2C2C2D5D10D102+ 1+4D5x2+ 1+4
kernelD5x2+ 1+4C2xD4xD5D4:6D10D5xC4oD4D4:8D10C5x2+ 1+42+ 1+4C2xD4C4oD4D5C1
# reps1996612181222

Matrix representation of D5x2+ 1+4 in GL6(F41)

4010000
5350000
001000
000100
000010
000001
,
100000
36400000
001000
000100
000010
000001
,
4000000
0400000
0004000
001000
001112
004004040
,
4000000
0400000
001000
0004000
000010
004004040
,
4000000
0400000
0000400
001112
001000
004040040
,
100000
010000
001000
000100
0000400
004040040

G:=sub<GL(6,GF(41))| [40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,36,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,1,40,0,0,40,0,1,0,0,0,0,0,1,40,0,0,0,0,2,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,40,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,1,40,0,0,0,1,0,40,0,0,40,1,0,0,0,0,0,2,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,0,0,0,1,0,40,0,0,0,0,40,0,0,0,0,0,0,40] >;

D5x2+ 1+4 in GAP, Magma, Sage, TeX

D_5\times 2_+^{1+4}
% in TeX

G:=Group("D5xES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1622);
// by ID

G=gap.SmallGroup(320,1622);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,297,851,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^4=d^2=f^2=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c^2*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<