Copied to
clipboard

G = C2xC9:C18order 324 = 22·34

Direct product of C2 and C9:C18

direct product, metacyclic, supersoluble, monomial

Aliases: C2xC9:C18, C18:C18, D9:C18, D18:C9, C9:(C2xC18), C9:C9:C22, (C3xD9).C6, (C6xD9).C3, C6.6(S3xC9), (C3xC9).1D6, C6.5(C9:C6), C3.3(S3xC18), (C3xC18).5S3, (C3xC18).5C6, C32.16(S3xC6), (C2xC9:C9):C2, (C3xC9).(C2xC6), C3.2(C2xC9:C6), (C3xC6).32(C3xS3), SmallGroup(324,64)

Series: Derived Chief Lower central Upper central

C1C9 — C2xC9:C18
C1C3C9C3xC9C9:C9C9:C18 — C2xC9:C18
C9 — C2xC9:C18
C1C6

Generators and relations for C2xC9:C18
 G = < a,b,c | a2=b9=c18=1, ab=ba, ac=ca, cbc-1=b2 >

Subgroups: 163 in 53 conjugacy classes, 25 normal (19 characteristic)
Quotients: C1, C2, C3, C22, S3, C6, C9, D6, C2xC6, C18, C3xS3, C2xC18, S3xC6, S3xC9, C9:C6, S3xC18, C2xC9:C6, C9:C18, C2xC9:C18
9C2
9C2
2C3
9C22
2C6
3S3
3S3
9C6
9C6
2C9
3C9
6C9
3D6
9C2xC6
2C18
3C18
3C3xS3
3C3xS3
6C18
9C18
9C18
2C3xC9
3S3xC6
9C2xC18
2C3xC18
3S3xC9
3S3xC9
3S3xC18

Smallest permutation representation of C2xC9:C18
On 36 points
Generators in S36
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 17 3 13 11 15 7 5 9)(2 4 12 8 10 18 14 16 6)(19 35 21 31 29 33 25 23 27)(20 22 30 26 28 36 32 34 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,17,3,13,11,15,7,5,9)(2,4,12,8,10,18,14,16,6)(19,35,21,31,29,33,25,23,27)(20,22,30,26,28,36,32,34,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,17,3,13,11,15,7,5,9)(2,4,12,8,10,18,14,16,6)(19,35,21,31,29,33,25,23,27)(20,22,30,26,28,36,32,34,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,17,3,13,11,15,7,5,9),(2,4,12,8,10,18,14,16,6),(19,35,21,31,29,33,25,23,27),(20,22,30,26,28,36,32,34,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I9A···9F9G···9O18A···18F18G···18O18P···18AA
order1222333336666666669···99···918···1818···1818···18
size1199112221122299993···36···63···36···69···9

60 irreducible representations

dim1111111112222226666
type+++++++
imageC1C2C2C3C6C6C9C18C18S3D6C3xS3S3xC6S3xC9S3xC18C9:C6C2xC9:C6C9:C18C2xC9:C18
kernelC2xC9:C18C9:C18C2xC9:C9C6xD9C3xD9C3xC18D18D9C18C3xC18C3xC9C3xC6C32C6C3C6C3C2C1
# reps12124261261122661122

Matrix representation of C2xC9:C18 in GL8(F19)

180000000
018000000
00100000
00010000
00001000
00000100
00000010
00000001
,
110000000
117000000
00070000
00007000
00100000
00000001
000001100
000000110
,
84000000
011000000
00000070
000000011
000001100
00070000
000011000
001100000

G:=sub<GL(8,GF(19))| [18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[11,11,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,1,0,0],[8,0,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0] >;

C2xC9:C18 in GAP, Magma, Sage, TeX

C_2\times C_9\rtimes C_{18}
% in TeX

G:=Group("C2xC9:C18");
// GroupNames label

G:=SmallGroup(324,64);
// by ID

G=gap.SmallGroup(324,64);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,68,5404,1096,208,7781]);
// Polycyclic

G:=Group<a,b,c|a^2=b^9=c^18=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C2xC9:C18 in TeX

׿
x
:
Z
F
o
wr
Q
<