Copied to
clipboard

G = C3xD4xD7order 336 = 24·3·7

Direct product of C3, D4 and D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3xD4xD7, D28:9C6, C12:6D14, C84:6C22, C42.42C23, C7:6(C6xD4), C4:1(C6xD7), C28:5(C2xC6), (C4xD7):6C6, (C7xD4):8C6, (C2xC6):4D14, C21:14(C2xD4), C7:D4:5C6, (C12xD7):6C2, D14:6(C2xC6), (C3xD28):9C2, (D4xC21):5C2, C22:2(C6xD7), (C2xC42):6C22, Dic7:5(C2xC6), (C22xD7):8C6, (C6xD7):10C22, C6.42(C22xD7), C14.19(C22xC6), (C3xDic7):8C22, (C2xC6xD7):6C2, C2.6(C2xC6xD7), (C2xC14):7(C2xC6), (C3xC7:D4):5C2, SmallGroup(336,178)

Series: Derived Chief Lower central Upper central

C1C14 — C3xD4xD7
C1C7C14C42C6xD7C2xC6xD7 — C3xD4xD7
C7C14 — C3xD4xD7
C1C6C3xD4

Generators and relations for C3xD4xD7
 G = < a,b,c,d,e | a3=b4=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 440 in 108 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C7, C2xC4, D4, D4, C23, C12, C12, C2xC6, C2xC6, D7, D7, C14, C14, C2xD4, C21, C2xC12, C3xD4, C3xD4, C22xC6, Dic7, C28, D14, D14, D14, C2xC14, C3xD7, C3xD7, C42, C42, C6xD4, C4xD7, D28, C7:D4, C7xD4, C22xD7, C3xDic7, C84, C6xD7, C6xD7, C6xD7, C2xC42, D4xD7, C12xD7, C3xD28, C3xC7:D4, D4xC21, C2xC6xD7, C3xD4xD7
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, D7, C2xD4, C3xD4, C22xC6, D14, C3xD7, C6xD4, C22xD7, C6xD7, D4xD7, C2xC6xD7, C3xD4xD7

Smallest permutation representation of C3xD4xD7
On 84 points
Generators in S84
(1 34 20)(2 35 21)(3 29 15)(4 30 16)(5 31 17)(6 32 18)(7 33 19)(8 36 22)(9 37 23)(10 38 24)(11 39 25)(12 40 26)(13 41 27)(14 42 28)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)
(1 48 13 55)(2 49 14 56)(3 43 8 50)(4 44 9 51)(5 45 10 52)(6 46 11 53)(7 47 12 54)(15 57 22 64)(16 58 23 65)(17 59 24 66)(18 60 25 67)(19 61 26 68)(20 62 27 69)(21 63 28 70)(29 71 36 78)(30 72 37 79)(31 73 38 80)(32 74 39 81)(33 75 40 82)(34 76 41 83)(35 77 42 84)
(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)(57 59)(60 63)(61 62)(64 66)(67 70)(68 69)(71 73)(74 77)(75 76)(78 80)(81 84)(82 83)

G:=sub<Sym(84)| (1,34,20)(2,35,21)(3,29,15)(4,30,16)(5,31,17)(6,32,18)(7,33,19)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,48,13,55)(2,49,14,56)(3,43,8,50)(4,44,9,51)(5,45,10,52)(6,46,11,53)(7,47,12,54)(15,57,22,64)(16,58,23,65)(17,59,24,66)(18,60,25,67)(19,61,26,68)(20,62,27,69)(21,63,28,70)(29,71,36,78)(30,72,37,79)(31,73,38,80)(32,74,39,81)(33,75,40,82)(34,76,41,83)(35,77,42,84), (43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)>;

G:=Group( (1,34,20)(2,35,21)(3,29,15)(4,30,16)(5,31,17)(6,32,18)(7,33,19)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,48,13,55)(2,49,14,56)(3,43,8,50)(4,44,9,51)(5,45,10,52)(6,46,11,53)(7,47,12,54)(15,57,22,64)(16,58,23,65)(17,59,24,66)(18,60,25,67)(19,61,26,68)(20,62,27,69)(21,63,28,70)(29,71,36,78)(30,72,37,79)(31,73,38,80)(32,74,39,81)(33,75,40,82)(34,76,41,83)(35,77,42,84), (43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83) );

G=PermutationGroup([[(1,34,20),(2,35,21),(3,29,15),(4,30,16),(5,31,17),(6,32,18),(7,33,19),(8,36,22),(9,37,23),(10,38,24),(11,39,25),(12,40,26),(13,41,27),(14,42,28),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70)], [(1,48,13,55),(2,49,14,56),(3,43,8,50),(4,44,9,51),(5,45,10,52),(6,46,11,53),(7,47,12,54),(15,57,22,64),(16,58,23,65),(17,59,24,66),(18,60,25,67),(19,61,26,68),(20,62,27,69),(21,63,28,70),(29,71,36,78),(30,72,37,79),(31,73,38,80),(32,74,39,81),(33,75,40,82),(34,76,41,83),(35,77,42,84)], [(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55),(57,59),(60,63),(61,62),(64,66),(67,70),(68,69),(71,73),(74,77),(75,76),(78,80),(81,84),(82,83)]])

75 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B6A6B6C6D6E6F6G6H6I6J6K6L6M6N7A7B7C12A12B12C12D14A14B14C14D···14I21A···21F28A28B28C42A···42F42G···42R84A···84F
order122222223344666666666666667771212121214141414···1421···2128282842···4242···4284···84
size1122771414112141122227777141414142222214142224···42···24442···24···44···4

75 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D7C3xD4D14D14C3xD7C6xD7C6xD7D4xD7C3xD4xD7
kernelC3xD4xD7C12xD7C3xD28C3xC7:D4D4xC21C2xC6xD7D4xD7C4xD7D28C7:D4C7xD4C22xD7C3xD7C3xD4D7C12C2xC6D4C4C22C3C1
# reps11121222242423436661236

Matrix representation of C3xD4xD7 in GL4(F337) generated by

208000
020800
001280
000128
,
336000
033600
0012
00336336
,
1000
0100
0010
00336336
,
303100
336000
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(337))| [208,0,0,0,0,208,0,0,0,0,128,0,0,0,0,128],[336,0,0,0,0,336,0,0,0,0,1,336,0,0,2,336],[1,0,0,0,0,1,0,0,0,0,1,336,0,0,0,336],[303,336,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

C3xD4xD7 in GAP, Magma, Sage, TeX

C_3\times D_4\times D_7
% in TeX

G:=Group("C3xD4xD7");
// GroupNames label

G:=SmallGroup(336,178);
// by ID

G=gap.SmallGroup(336,178);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,260,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<