Copied to
clipboard

G = D7xS4order 336 = 24·3·7

Direct product of D7 and S4

direct product, non-abelian, soluble, monomial

Aliases: D7xS4, A4:1D14, C7:S4:C2, (C7xS4):C2, C7:1(C2xS4), (A4xD7):C2, (C2xC14):D6, C22:(S3xD7), (C7xA4):C22, (C22xD7):S3, SmallGroup(336,212)

Series: Derived Chief Lower central Upper central

C1C22C7xA4 — D7xS4
C1C22C2xC14C7xA4A4xD7 — D7xS4
C7xA4 — D7xS4
C1

Generators and relations for D7xS4
 G = < a,b,c,d,e,f | a7=b2=c2=d2=e3=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 604 in 66 conjugacy classes, 13 normal (all characteristic)
C1, C2, C3, C4, C22, C22, S3, C6, C7, C2xC4, D4, C23, A4, D6, D7, D7, C14, C2xD4, C21, S4, S4, C2xA4, Dic7, C28, D14, C2xC14, C2xC14, S3xC7, C3xD7, D21, C2xS4, C4xD7, D28, C7:D4, C7xD4, C22xD7, C22xD7, S3xD7, C7xA4, D4xD7, C7xS4, C7:S4, A4xD7, D7xS4
Quotients: C1, C2, C22, S3, D6, D7, S4, D14, C2xS4, S3xD7, D7xS4

Character table of D7xS4

 class 12A2B2C2D2E34A4B67A7B7C14A14B14C14D14E14F21A21B21C28A28B28C
 size 13672142864256222666121212161616121212
ρ11111111111111111111111111    trivial
ρ2111-1-1-111-1-1111111111111111    linear of order 2
ρ311-111-11-1-11111111-1-1-1111-1-1-1    linear of order 2
ρ411-1-1-111-11-1111111-1-1-1111-1-1-1    linear of order 2
ρ5220-2-20-1001222222000-1-1-1000    orthogonal lifted from D6
ρ6220220-100-1222222000-1-1-1000    orthogonal lifted from S3
ρ72220002200ζ7572ζ7473ζ767ζ767ζ7572ζ7473ζ767ζ7473ζ7572ζ7473ζ7572ζ767ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ822-20002-200ζ767ζ7572ζ7473ζ7473ζ767ζ757274737572767ζ7572ζ767ζ747376775727473    orthogonal lifted from D14
ρ922-20002-200ζ7473ζ767ζ7572ζ7572ζ7473ζ76775727677473ζ767ζ7473ζ757274737677572    orthogonal lifted from D14
ρ1022-20002-200ζ7572ζ7473ζ767ζ767ζ7572ζ747376774737572ζ7473ζ7572ζ76775727473767    orthogonal lifted from D14
ρ112220002200ζ767ζ7572ζ7473ζ7473ζ767ζ7572ζ7473ζ7572ζ767ζ7572ζ767ζ7473ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ122220002200ζ7473ζ767ζ7572ζ7572ζ7473ζ767ζ7572ζ767ζ7473ζ767ζ7473ζ7572ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ133-1-1-31101-10333-1-1-1-1-1-1000111    orthogonal lifted from C2xS4
ρ143-11-31-10-110333-1-1-1111000-1-1-1    orthogonal lifted from C2xS4
ρ153-1-13-1-10110333-1-1-1-1-1-1000111    orthogonal lifted from S4
ρ163-113-110-1-10333-1-1-1111000-1-1-1    orthogonal lifted from S4
ρ17440000-200076+2ζ775+2ζ7274+2ζ7374+2ζ7376+2ζ775+2ζ7200075727677473000    orthogonal lifted from S3xD7
ρ18440000-200075+2ζ7274+2ζ7376+2ζ776+2ζ775+2ζ7274+2ζ7300074737572767000    orthogonal lifted from S3xD7
ρ19440000-200074+2ζ7376+2ζ775+2ζ7275+2ζ7274+2ζ7376+2ζ700076774737572000    orthogonal lifted from S3xD7
ρ206-220000-20074+3ζ7376+3ζ775+3ζ7275727473767ζ7572ζ767ζ747300074737677572    orthogonal faithful
ρ216-220000-20075+3ζ7274+3ζ7376+3ζ776775727473ζ767ζ7473ζ757200075727473767    orthogonal faithful
ρ226-2-2000020075+3ζ7274+3ζ7376+3ζ77677572747376774737572000ζ7572ζ7473ζ767    orthogonal faithful
ρ236-220000-20076+3ζ775+3ζ7274+3ζ7374737677572ζ7473ζ7572ζ76700076775727473    orthogonal faithful
ρ246-2-2000020074+3ζ7376+3ζ775+3ζ727572747376775727677473000ζ7473ζ767ζ7572    orthogonal faithful
ρ256-2-2000020076+3ζ775+3ζ7274+3ζ737473767757274737572767000ζ767ζ7572ζ7473    orthogonal faithful

Permutation representations of D7xS4
On 28 points - transitive group 28T45
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 17)(18 21)(19 20)(22 25)(23 24)(26 28)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 26)(16 27)(17 28)(18 22)(19 23)(20 24)(21 25)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 20)(9 21)(10 15)(11 16)(12 17)(13 18)(14 19)
(8 24 20)(9 25 21)(10 26 15)(11 27 16)(12 28 17)(13 22 18)(14 23 19)
(8 20)(9 21)(10 15)(11 16)(12 17)(13 18)(14 19)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,17)(18,21)(19,20)(22,25)(23,24)(26,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19), (8,24,20)(9,25,21)(10,26,15)(11,27,16)(12,28,17)(13,22,18)(14,23,19), (8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,17)(18,21)(19,20)(22,25)(23,24)(26,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19), (8,24,20)(9,25,21)(10,26,15)(11,27,16)(12,28,17)(13,22,18)(14,23,19), (8,20)(9,21)(10,15)(11,16)(12,17)(13,18)(14,19) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,17),(18,21),(19,20),(22,25),(23,24),(26,28)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,26),(16,27),(17,28),(18,22),(19,23),(20,24),(21,25)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,20),(9,21),(10,15),(11,16),(12,17),(13,18),(14,19)], [(8,24,20),(9,25,21),(10,26,15),(11,27,16),(12,28,17),(13,22,18),(14,23,19)], [(8,20),(9,21),(10,15),(11,16),(12,17),(13,18),(14,19)]])

G:=TransitiveGroup(28,45);

Matrix representation of D7xS4 in GL5(F337)

3361000
108228000
00100
00010
00001
,
10000
229336000
0033600
0003360
0000336
,
10000
01000
0003361
0003360
0013360
,
10000
01000
0001336
0010336
0000336
,
10000
01000
00001
00100
00010
,
3360000
0336000
00010
00100
00001

G:=sub<GL(5,GF(337))| [336,108,0,0,0,1,228,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,229,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,336,336,336,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,336,336,336],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[336,0,0,0,0,0,336,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;

D7xS4 in GAP, Magma, Sage, TeX

D_7\times S_4
% in TeX

G:=Group("D7xS4");
// GroupNames label

G:=SmallGroup(336,212);
// by ID

G=gap.SmallGroup(336,212);
# by ID

G:=PCGroup([6,-2,-2,-3,-7,-2,2,80,1731,2530,1276,1523,2285]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^7=b^2=c^2=d^2=e^3=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of D7xS4 in TeX

׿
x
:
Z
F
o
wr
Q
<