Copied to
clipboard

G = C6xF8order 336 = 24·3·7

Direct product of C6 and F8

direct product, metabelian, soluble, monomial, A-group

Aliases: C6xF8, C24:C21, C23:C42, (C23xC6):C7, (C22xC6):2C14, SmallGroup(336,213)

Series: Derived Chief Lower central Upper central

C1C23 — C6xF8
C1C23F8C3xF8 — C6xF8
C23 — C6xF8
C1C6

Generators and relations for C6xF8
 G = < a,b,c,d,e | a6=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >

Subgroups: 170 in 34 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C3, C6, C7, C14, C21, C42, F8, C2xF8, C3xF8, C6xF8
7C2
7C2
8C7
7C22
7C22
7C22
7C22
7C22
7C6
7C6
8C14
8C21
7C23
7C23
7C2xC6
7C2xC6
7C2xC6
7C2xC6
7C2xC6
8C42
7C22xC6
7C22xC6

Smallest permutation representation of C6xF8
On 42 points
Generators in S42
(1 33 38 19 24 12)(2 34 39 20 25 13)(3 35 40 21 26 14)(4 29 41 15 27 8)(5 30 42 16 28 9)(6 31 36 17 22 10)(7 32 37 18 23 11)
(2 20)(4 15)(5 16)(6 17)(8 41)(9 42)(10 36)(13 39)(22 31)(25 34)(27 29)(28 30)
(3 21)(5 16)(6 17)(7 18)(9 42)(10 36)(11 37)(14 40)(22 31)(23 32)(26 35)(28 30)
(1 19)(4 15)(6 17)(7 18)(8 41)(10 36)(11 37)(12 38)(22 31)(23 32)(24 33)(27 29)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)

G:=sub<Sym(42)| (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)>;

G:=Group( (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42) );

G=PermutationGroup([[(1,33,38,19,24,12),(2,34,39,20,25,13),(3,35,40,21,26,14),(4,29,41,15,27,8),(5,30,42,16,28,9),(6,31,36,17,22,10),(7,32,37,18,23,11)], [(2,20),(4,15),(5,16),(6,17),(8,41),(9,42),(10,36),(13,39),(22,31),(25,34),(27,29),(28,30)], [(3,21),(5,16),(6,17),(7,18),(9,42),(10,36),(11,37),(14,40),(22,31),(23,32),(26,35),(28,30)], [(1,19),(4,15),(6,17),(7,18),(8,41),(10,36),(11,37),(12,38),(22,31),(23,32),(24,33),(27,29)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)]])

48 conjugacy classes

class 1 2A2B2C3A3B6A6B6C6D6E6F7A···7F14A···14F21A···21L42A···42L
order1222336666667···714···1421···2142···42
size1177111177778···88···88···88···8

48 irreducible representations

dim111111117777
type++++
imageC1C2C3C6C7C14C21C42F8C2xF8C3xF8C6xF8
kernelC6xF8C3xF8C2xF8F8C23xC6C22xC6C24C23C6C3C2C1
# reps11226612121122

Matrix representation of C6xF8 in GL7(F43)

7000000
0700000
0070000
0007000
0000700
0000070
0000007
,
1000000
0100000
160420000
210042000
410004200
0000010
110000042
,
1000000
44200000
160420000
210042000
0000100
350000420
0000001
,
42000000
04200000
00420000
22001000
00004200
8000010
32000001
,
44100000
03910000
02701000
02200100
0200010
0800001
03200000

G:=sub<GL(7,GF(43))| [7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7],[1,0,16,21,41,0,11,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42],[1,4,16,21,0,35,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1],[42,0,0,22,0,8,32,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,41,39,27,22,2,8,32,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

C6xF8 in GAP, Magma, Sage, TeX

C_6\times F_8
% in TeX

G:=Group("C6xF8");
// GroupNames label

G:=SmallGroup(336,213);
// by ID

G=gap.SmallGroup(336,213);
# by ID

G:=PCGroup([6,-2,-3,-7,-2,2,2,351,856,1277]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C6xF8 in TeX

׿
x
:
Z
F
o
wr
Q
<