Extensions 1→N→G→Q→1 with N=C56 and Q=C6

Direct product G=NxQ with N=C56 and Q=C6
dρLabelID
C2xC168336C2xC168336,109

Semidirect products G=N:Q with N=C56 and Q=C6
extensionφ:Q→Aut NdρLabelID
C56:1C6 = D56:C3φ: C6/C1C6 ⊆ Aut C56566+C56:1C6336,10
C56:2C6 = C56:C6φ: C6/C1C6 ⊆ Aut C56566C56:2C6336,9
C56:3C6 = C8xF7φ: C6/C1C6 ⊆ Aut C56566C56:3C6336,7
C56:4C6 = C8:F7φ: C6/C1C6 ⊆ Aut C56566C56:4C6336,8
C56:5C6 = D8xC7:C3φ: C6/C1C6 ⊆ Aut C56566C56:5C6336,53
C56:6C6 = SD16xC7:C3φ: C6/C1C6 ⊆ Aut C56566C56:6C6336,54
C56:7C6 = M4(2)xC7:C3φ: C6/C1C6 ⊆ Aut C56566C56:7C6336,52
C56:8C6 = C2xC8xC7:C3φ: C6/C2C3 ⊆ Aut C56112C56:8C6336,51
C56:9C6 = C3xD56φ: C6/C3C2 ⊆ Aut C561682C56:9C6336,61
C56:10C6 = C3xC56:C2φ: C6/C3C2 ⊆ Aut C561682C56:10C6336,60
C56:11C6 = D7xC24φ: C6/C3C2 ⊆ Aut C561682C56:11C6336,58
C56:12C6 = C3xC8:D7φ: C6/C3C2 ⊆ Aut C561682C56:12C6336,59
C56:13C6 = D8xC21φ: C6/C3C2 ⊆ Aut C561682C56:13C6336,111
C56:14C6 = SD16xC21φ: C6/C3C2 ⊆ Aut C561682C56:14C6336,112
C56:15C6 = M4(2)xC21φ: C6/C3C2 ⊆ Aut C561682C56:15C6336,110

Non-split extensions G=N.Q with N=C56 and Q=C6
extensionφ:Q→Aut NdρLabelID
C56.1C6 = C8.F7φ: C6/C1C6 ⊆ Aut C561126-C56.1C6336,11
C56.2C6 = C7:C48φ: C6/C1C6 ⊆ Aut C561126C56.2C6336,1
C56.3C6 = Q16xC7:C3φ: C6/C1C6 ⊆ Aut C561126C56.3C6336,55
C56.4C6 = C16xC7:C3φ: C6/C2C3 ⊆ Aut C561123C56.4C6336,2
C56.5C6 = C3xDic28φ: C6/C3C2 ⊆ Aut C563362C56.5C6336,62
C56.6C6 = C3xC7:C16φ: C6/C3C2 ⊆ Aut C563362C56.6C6336,4
C56.7C6 = Q16xC21φ: C6/C3C2 ⊆ Aut C563362C56.7C6336,113

׿
x
:
Z
F
o
wr
Q
<