Copied to
clipboard

G = C8xF7order 336 = 24·3·7

Direct product of C8 and F7

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C8xF7, D7:C24, C56:3C6, D14.2C12, Dic7.2C12, (C8xD7):C3, C7:C8:6C6, C7:C24:6C2, C7:1(C2xC24), C7:C12.2C4, C2.1(C4xF7), (C4xD7).3C6, (C4xF7).3C2, (C2xF7).2C4, C4.12(C2xF7), C14.1(C2xC12), C28.13(C2xC6), C7:C3:1(C2xC8), (C8xC7:C3):3C2, (C4xC7:C3).13C22, (C2xC7:C3).1(C2xC4), SmallGroup(336,7)

Series: Derived Chief Lower central Upper central

C1C7 — C8xF7
C1C7C14C28C4xC7:C3C4xF7 — C8xF7
C7 — C8xF7
C1C8

Generators and relations for C8xF7
 G = < a,b,c | a8=b7=c6=1, ab=ba, ac=ca, cbc-1=b5 >

Subgroups: 152 in 44 conjugacy classes, 26 normal (22 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, C12, C2xC6, C2xC8, C24, C2xC12, F7, C2xC24, C2xF7, C4xF7, C8xF7
7C2
7C2
7C3
7C22
7C4
7C6
7C6
7C6
7C8
7C2xC4
7C12
7C2xC6
7C12
7C2xC8
7C24
7C24
7C2xC12
7C2xC24

Smallest permutation representation of C8xF7
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 31 13 37 48 17 49)(2 32 14 38 41 18 50)(3 25 15 39 42 19 51)(4 26 16 40 43 20 52)(5 27 9 33 44 21 53)(6 28 10 34 45 22 54)(7 29 11 35 46 23 55)(8 30 12 36 47 24 56)
(9 53 44 21 27 33)(10 54 45 22 28 34)(11 55 46 23 29 35)(12 56 47 24 30 36)(13 49 48 17 31 37)(14 50 41 18 32 38)(15 51 42 19 25 39)(16 52 43 20 26 40)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,13,37,48,17,49)(2,32,14,38,41,18,50)(3,25,15,39,42,19,51)(4,26,16,40,43,20,52)(5,27,9,33,44,21,53)(6,28,10,34,45,22,54)(7,29,11,35,46,23,55)(8,30,12,36,47,24,56), (9,53,44,21,27,33)(10,54,45,22,28,34)(11,55,46,23,29,35)(12,56,47,24,30,36)(13,49,48,17,31,37)(14,50,41,18,32,38)(15,51,42,19,25,39)(16,52,43,20,26,40)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,13,37,48,17,49)(2,32,14,38,41,18,50)(3,25,15,39,42,19,51)(4,26,16,40,43,20,52)(5,27,9,33,44,21,53)(6,28,10,34,45,22,54)(7,29,11,35,46,23,55)(8,30,12,36,47,24,56), (9,53,44,21,27,33)(10,54,45,22,28,34)(11,55,46,23,29,35)(12,56,47,24,30,36)(13,49,48,17,31,37)(14,50,41,18,32,38)(15,51,42,19,25,39)(16,52,43,20,26,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,31,13,37,48,17,49),(2,32,14,38,41,18,50),(3,25,15,39,42,19,51),(4,26,16,40,43,20,52),(5,27,9,33,44,21,53),(6,28,10,34,45,22,54),(7,29,11,35,46,23,55),(8,30,12,36,47,24,56)], [(9,53,44,21,27,33),(10,54,45,22,28,34),(11,55,46,23,29,35),(12,56,47,24,30,36),(13,49,48,17,31,37),(14,50,41,18,32,38),(15,51,42,19,25,39),(16,52,43,20,26,40)]])

56 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F 7 8A8B8C8D8E8F8G8H12A···12H 14 24A···24P28A28B56A56B56C56D
order12223344446···678888888812···121424···24282856565656
size11777711777···76111177777···767···7666666

56 irreducible representations

dim111111111111116666
type++++++
imageC1C2C2C2C3C4C4C6C6C6C8C12C12C24F7C2xF7C4xF7C8xF7
kernelC8xF7C7:C24C8xC7:C3C4xF7C8xD7C7:C12C2xF7C7:C8C56C4xD7F7Dic7D14D7C8C4C2C1
# reps1111222222844161124

Matrix representation of C8xF7 in GL6(F337)

8500000
0850000
0085000
0008500
0000850
0000085
,
336336336336336336
100000
010000
001000
000100
000010
,
000010
001000
100000
000001
000100
010000

G:=sub<GL(6,GF(337))| [85,0,0,0,0,0,0,85,0,0,0,0,0,0,85,0,0,0,0,0,0,85,0,0,0,0,0,0,85,0,0,0,0,0,0,85],[336,1,0,0,0,0,336,0,1,0,0,0,336,0,0,1,0,0,336,0,0,0,1,0,336,0,0,0,0,1,336,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C8xF7 in GAP, Magma, Sage, TeX

C_8\times F_7
% in TeX

G:=Group("C8xF7");
// GroupNames label

G:=SmallGroup(336,7);
// by ID

G=gap.SmallGroup(336,7);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,79,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^8=b^7=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C8xF7 in TeX

׿
x
:
Z
F
o
wr
Q
<