Copied to
clipboard

G = S3xDic15order 360 = 23·32·5

Direct product of S3 and Dic15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xDic15, D6.D15, C6.2D30, C30.22D6, C10.2S32, (S3xC6).D5, (S3xC10).S3, (C3xS3):Dic5, C6.2(S3xD5), C5:4(S3xDic3), (S3xC15):3C4, C15:16(C4xS3), C3:3(S3xDic5), C2.2(S3xD15), (C3xC6).2D10, (S3xC30).2C2, C3:Dic15:6C2, (C5xS3):2Dic3, C15:5(C2xDic3), C3:1(C2xDic15), C32:2(C2xDic5), (C3xDic15):5C2, (C3xC30).16C22, (C3xC15):20(C2xC4), SmallGroup(360,78)

Series: Derived Chief Lower central Upper central

C1C3xC15 — S3xDic15
C1C5C15C3xC15C3xC30C3xDic15 — S3xDic15
C3xC15 — S3xDic15
C1C2

Generators and relations for S3xDic15
 G = < a,b,c,d | a3=b2=c30=1, d2=c15, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 348 in 70 conjugacy classes, 32 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2xC4, C32, C10, C10, Dic3, C12, D6, C2xC6, C15, C15, C3xS3, C3xC6, Dic5, C2xC10, C4xS3, C2xDic3, C5xS3, C30, C30, C3xDic3, C3:Dic3, S3xC6, C2xDic5, C3xC15, C3xDic5, Dic15, Dic15, S3xC10, C2xC30, S3xDic3, S3xC15, C3xC30, S3xDic5, C2xDic15, C3xDic15, C3:Dic15, S3xC30, S3xDic15
Quotients: C1, C2, C4, C22, S3, C2xC4, D5, Dic3, D6, Dic5, D10, C4xS3, C2xDic3, D15, S32, C2xDic5, Dic15, S3xD5, D30, S3xDic3, S3xDic5, C2xDic15, S3xD15, S3xDic15

Smallest permutation representation of S3xDic15
On 120 points
Generators in S120
(1 11 21)(2 12 22)(3 13 23)(4 14 24)(5 15 25)(6 16 26)(7 17 27)(8 18 28)(9 19 29)(10 20 30)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 101 111)(92 102 112)(93 103 113)(94 104 114)(95 105 115)(96 106 116)(97 107 117)(98 108 118)(99 109 119)(100 110 120)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 61 16 76)(2 90 17 75)(3 89 18 74)(4 88 19 73)(5 87 20 72)(6 86 21 71)(7 85 22 70)(8 84 23 69)(9 83 24 68)(10 82 25 67)(11 81 26 66)(12 80 27 65)(13 79 28 64)(14 78 29 63)(15 77 30 62)(31 107 46 92)(32 106 47 91)(33 105 48 120)(34 104 49 119)(35 103 50 118)(36 102 51 117)(37 101 52 116)(38 100 53 115)(39 99 54 114)(40 98 55 113)(41 97 56 112)(42 96 57 111)(43 95 58 110)(44 94 59 109)(45 93 60 108)

G:=sub<Sym(120)| (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,76)(2,90,17,75)(3,89,18,74)(4,88,19,73)(5,87,20,72)(6,86,21,71)(7,85,22,70)(8,84,23,69)(9,83,24,68)(10,82,25,67)(11,81,26,66)(12,80,27,65)(13,79,28,64)(14,78,29,63)(15,77,30,62)(31,107,46,92)(32,106,47,91)(33,105,48,120)(34,104,49,119)(35,103,50,118)(36,102,51,117)(37,101,52,116)(38,100,53,115)(39,99,54,114)(40,98,55,113)(41,97,56,112)(42,96,57,111)(43,95,58,110)(44,94,59,109)(45,93,60,108)>;

G:=Group( (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,76)(2,90,17,75)(3,89,18,74)(4,88,19,73)(5,87,20,72)(6,86,21,71)(7,85,22,70)(8,84,23,69)(9,83,24,68)(10,82,25,67)(11,81,26,66)(12,80,27,65)(13,79,28,64)(14,78,29,63)(15,77,30,62)(31,107,46,92)(32,106,47,91)(33,105,48,120)(34,104,49,119)(35,103,50,118)(36,102,51,117)(37,101,52,116)(38,100,53,115)(39,99,54,114)(40,98,55,113)(41,97,56,112)(42,96,57,111)(43,95,58,110)(44,94,59,109)(45,93,60,108) );

G=PermutationGroup([[(1,11,21),(2,12,22),(3,13,23),(4,14,24),(5,15,25),(6,16,26),(7,17,27),(8,18,28),(9,19,29),(10,20,30),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,101,111),(92,102,112),(93,103,113),(94,104,114),(95,105,115),(96,106,116),(97,107,117),(98,108,118),(99,109,119),(100,110,120)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,61,16,76),(2,90,17,75),(3,89,18,74),(4,88,19,73),(5,87,20,72),(6,86,21,71),(7,85,22,70),(8,84,23,69),(9,83,24,68),(10,82,25,67),(11,81,26,66),(12,80,27,65),(13,79,28,64),(14,78,29,63),(15,77,30,62),(31,107,46,92),(32,106,47,91),(33,105,48,120),(34,104,49,119),(35,103,50,118),(36,102,51,117),(37,101,52,116),(38,100,53,115),(39,99,54,114),(40,98,55,113),(41,97,56,112),(42,96,57,111),(43,95,58,110),(44,94,59,109),(45,93,60,108)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D5A5B6A6B6C6D6E10A10B10C10D10E10F12A12B15A15B15C15D15E···15J30A30B30C30D30E···30J30K···30R
order12223334444556666610101010101012121515151515···153030303030···3030···30
size1133224151545452222466226666303022224···422224···46···6

54 irreducible representations

dim1111122222222222444444
type+++++++-+-++-+++--+-
imageC1C2C2C2C4S3S3D5Dic3D6Dic5D10C4xS3D15Dic15D30S32S3xD5S3xDic3S3xDic5S3xD15S3xDic15
kernelS3xDic15C3xDic15C3:Dic15S3xC30S3xC15Dic15S3xC10S3xC6C5xS3C30C3xS3C3xC6C15D6S3C6C10C6C5C3C2C1
# reps1111411222422484121244

Matrix representation of S3xDic15 in GL6(F61)

100000
010000
001000
000100
000001
00006060
,
6000000
0600000
0060000
0006000
000010
00006060
,
44600000
100000
00606000
001000
000010
000001
,
22470000
39390000
0060000
001100
000010
000001

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[44,1,0,0,0,0,60,0,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,39,0,0,0,0,47,39,0,0,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3xDic15 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_{15}
% in TeX

G:=Group("S3xDic15");
// GroupNames label

G:=SmallGroup(360,78);
// by ID

G=gap.SmallGroup(360,78);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^30=1,d^2=c^15,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<