Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C3xS3

Direct product G=NxQ with N=C2xC10 and Q=C3xS3
dρLabelID
S3xC2xC30120S3xC2xC30360,158

Semidirect products G=N:Q with N=C2xC10 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC10):1(C3xS3) = C15xS4φ: C3xS3/C3S3 ⊆ Aut C2xC10603(C2xC10):1(C3xS3)360,138
(C2xC10):2(C3xS3) = C3xC5:S4φ: C3xS3/C3S3 ⊆ Aut C2xC10606(C2xC10):2(C3xS3)360,139
(C2xC10):3(C3xS3) = A4xD15φ: C3xS3/C3C6 ⊆ Aut C2xC10606+(C2xC10):3(C3xS3)360,144
(C2xC10):4(C3xS3) = C5xS3xA4φ: C3xS3/S3C3 ⊆ Aut C2xC10606(C2xC10):4(C3xS3)360,143
(C2xC10):5(C3xS3) = C15xC3:D4φ: C3xS3/C32C2 ⊆ Aut C2xC10602(C2xC10):5(C3xS3)360,99
(C2xC10):6(C3xS3) = C3xC15:7D4φ: C3xS3/C32C2 ⊆ Aut C2xC10602(C2xC10):6(C3xS3)360,104
(C2xC10):7(C3xS3) = C2xC6xD15φ: C3xS3/C32C2 ⊆ Aut C2xC10120(C2xC10):7(C3xS3)360,159

Non-split extensions G=N.Q with N=C2xC10 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC10).(C3xS3) = C6xDic15φ: C3xS3/C32C2 ⊆ Aut C2xC10120(C2xC10).(C3xS3)360,103
(C2xC10).2(C3xS3) = Dic3xC30central extension (φ=1)120(C2xC10).2(C3xS3)360,98

׿
x
:
Z
F
o
wr
Q
<