Copied to
clipboard

G = A4xD15order 360 = 23·32·5

Direct product of A4 and D15

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xD15, C5:(S3xA4), C3:(D5xA4), (C5xA4):2S3, C15:1(C2xA4), (C2xC30):1C6, (C3xA4):3D5, (A4xC15):3C2, (C22xD15):C3, C22:2(C3xD15), (C2xC6):(C3xD5), (C2xC10):3(C3xS3), SmallGroup(360,144)

Series: Derived Chief Lower central Upper central

C1C2xC30 — A4xD15
C1C5C15C2xC30A4xC15 — A4xD15
C2xC30 — A4xD15
C1

Generators and relations for A4xD15
 G = < a,b,c,d,e | a2=b2=c3=d15=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 444 in 52 conjugacy classes, 15 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, D5, A4, C3xS3, C2xA4, C3xD5, D15, S3xA4, C3xD15, D5xA4, A4xD15
3C2
15C2
45C2
4C3
8C3
45C22
45C22
3C6
5S3
15S3
60C6
4C32
3C10
3D5
9D5
4C15
8C15
15C23
2A4
15D6
15D6
20C3xS3
9D10
9D10
3C30
3D15
12C3xD5
4C3xC15
5C22xS3
15C2xA4
3C22xD5
2C5xA4
3D30
3D30
4C3xD15
5S3xA4
3D5xA4

Smallest permutation representation of A4xD15
On 60 points
Generators in S60
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)
(16 38 53)(17 39 54)(18 40 55)(19 41 56)(20 42 57)(21 43 58)(22 44 59)(23 45 60)(24 31 46)(25 32 47)(26 33 48)(27 34 49)(28 35 50)(29 36 51)(30 37 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)

G:=sub<Sym(60)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52), (16,38,53)(17,39,54)(18,40,55)(19,41,56)(20,42,57)(21,43,58)(22,44,59)(23,45,60)(24,31,46)(25,32,47)(26,33,48)(27,34,49)(28,35,50)(29,36,51)(30,37,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)>;

G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52), (16,38,53)(17,39,54)(18,40,55)(19,41,56)(20,42,57)(21,43,58)(22,44,59)(23,45,60)(24,31,46)(25,32,47)(26,33,48)(27,34,49)(28,35,50)(29,36,51)(30,37,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54) );

G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52)], [(16,38,53),(17,39,54),(18,40,55),(19,41,56),(20,42,57),(21,43,58),(22,44,59),(23,45,60),(24,31,46),(25,32,47),(26,33,48),(27,34,49),(28,35,50),(29,36,51),(30,37,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54)]])

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E5A5B6A6B6C10A10B15A15B15C15D15E···15P30A30B30C30D
order1222333335566610101515151515···1530303030
size1315452448822660606622228···86666

36 irreducible representations

dim111122222233666
type++++++++++
imageC1C2C3C6S3D5C3xS3D15C3xD5C3xD15A4C2xA4S3xA4D5xA4A4xD15
kernelA4xD15A4xC15C22xD15C2xC30C5xA4C3xA4C2xC10A4C2xC6C22D15C15C5C3C1
# reps112212244811124

Matrix representation of A4xD15 in GL5(F31)

10000
01000
00010
00100
00303030
,
10000
01000
00001
00303030
00100
,
50000
05000
00100
00303030
00010
,
119000
65000
00100
00010
00001
,
1420000
2917000
003000
000300
000030

G:=sub<GL(5,GF(31))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,30,0,0,1,0,30,0,0,0,0,30],[1,0,0,0,0,0,1,0,0,0,0,0,0,30,1,0,0,0,30,0,0,0,1,30,0],[5,0,0,0,0,0,5,0,0,0,0,0,1,30,0,0,0,0,30,1,0,0,0,30,0],[11,6,0,0,0,9,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[14,29,0,0,0,20,17,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,30] >;

A4xD15 in GAP, Magma, Sage, TeX

A_4\times D_{15}
% in TeX

G:=Group("A4xD15");
// GroupNames label

G:=SmallGroup(360,144);
// by ID

G=gap.SmallGroup(360,144);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-3,-5,170,81,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^15=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4xD15 in TeX

׿
x
:
Z
F
o
wr
Q
<