Copied to
clipboard

G = Dic10:5D5order 400 = 24·52

The semidirect product of Dic10 and D5 acting through Inn(Dic10)

metabelian, supersoluble, monomial

Aliases: Dic10:5D5, C20.27D10, D10.10D10, Dic5.17D10, C4.7D52, (C4xD5):2D5, (D5xC20):3C2, C5:1(C4oD20), C20:D5:4C2, C5:D20:4C2, C52:5(C4oD4), C5:1(Q8:2D5), (C5xDic10):7C2, (C5xC10).6C23, C10.6(C22xD5), Dic5:2D5:1C2, (C5xC20).20C22, (D5xC10).11C22, (C5xDic5).4C22, C2.9(C2xD52), (C2xC5:D5).1C22, SmallGroup(400,168)

Series: Derived Chief Lower central Upper central

C1C5xC10 — Dic10:5D5
C1C5C52C5xC10D5xC10C5:D20 — Dic10:5D5
C52C5xC10 — Dic10:5D5
C1C2C4

Generators and relations for Dic10:5D5
 G = < a,b,c,d | a20=c5=d2=1, b2=a10, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 692 in 96 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2xC4, D4, Q8, D5, C10, C10, C4oD4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C52, Dic10, C4xD5, C4xD5, D20, C5:D4, C2xC20, C5xQ8, C5xD5, C5:D5, C5xC10, C4oD20, Q8:2D5, C5xDic5, C5xDic5, C5xC20, D5xC10, C2xC5:D5, Dic5:2D5, C5:D20, C5xDic10, D5xC20, C20:D5, Dic10:5D5
Quotients: C1, C2, C22, C23, D5, C4oD4, D10, C22xD5, C4oD20, Q8:2D5, D52, C2xD52, Dic10:5D5

Smallest permutation representation of Dic10:5D5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 25 11 35)(2 24 12 34)(3 23 13 33)(4 22 14 32)(5 21 15 31)(6 40 16 30)(7 39 17 29)(8 38 18 28)(9 37 19 27)(10 36 20 26)
(1 5 9 13 17)(2 6 10 14 18)(3 7 11 15 19)(4 8 12 16 20)(21 37 33 29 25)(22 38 34 30 26)(23 39 35 31 27)(24 40 36 32 28)
(1 39)(2 40)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,39)(2,40)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,39)(2,40)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,25,11,35),(2,24,12,34),(3,23,13,33),(4,22,14,32),(5,21,15,31),(6,40,16,30),(7,39,17,29),(8,38,18,28),(9,37,19,27),(10,36,20,26)], [(1,5,9,13,17),(2,6,10,14,18),(3,7,11,15,19),(4,8,12,16,20),(21,37,33,29,25),(22,38,34,30,26),(23,39,35,31,27),(24,40,36,32,28)], [(1,39),(2,40),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38)]])

52 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I10J10K10L20A20B20C20D20E···20N20O20P20Q20R20S20T20U20V
order1222244444555555551010101010101010101010102020202020···202020202020202020
size11105050255101022224444222244441010101022224···41010101020202020

52 irreducible representations

dim11111122222224444
type+++++++++++++++
imageC1C2C2C2C2C2D5D5C4oD4D10D10D10C4oD20Q8:2D5D52C2xD52Dic10:5D5
kernelDic10:5D5Dic5:2D5C5:D20C5xDic10D5xC20C20:D5Dic10C4xD5C52Dic5C20D10C5C5C4C2C1
# reps12211122264282448

Matrix representation of Dic10:5D5 in GL4(F41) generated by

143000
11900
0010
0001
,
174000
32400
0010
0001
,
1000
0100
00040
0016
,
174000
12400
0016
00040
G:=sub<GL(4,GF(41))| [14,11,0,0,30,9,0,0,0,0,1,0,0,0,0,1],[17,3,0,0,40,24,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,6],[17,1,0,0,40,24,0,0,0,0,1,0,0,0,6,40] >;

Dic10:5D5 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_5D_5
% in TeX

G:=Group("Dic10:5D5");
// GroupNames label

G:=SmallGroup(400,168);
// by ID

G=gap.SmallGroup(400,168);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,121,55,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^5=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<