Copied to
clipboard

G = Dic10:D5order 400 = 24·52

4th semidirect product of Dic10 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial

Aliases: Dic10:4D5, C20.23D10, Dic5.2D10, C4.12D52, C5:D5:2Q8, C5:1(Q8xD5), C52:3(C2xQ8), C52:2Q8:3C2, (C5xDic10):6C2, (C5xC10).4C23, C10.4(C22xD5), (C5xC20).19C22, Dic5:2D5.1C2, (C5xDic5).3C22, C52:6C4.10C22, C2.7(C2xD52), (C4xC5:D5).1C2, (C2xC5:D5).13C22, SmallGroup(400,166)

Series: Derived Chief Lower central Upper central

C1C5xC10 — Dic10:D5
C1C5C52C5xC10C5xDic5Dic5:2D5 — Dic10:D5
C52C5xC10 — Dic10:D5
C1C2C4

Generators and relations for Dic10:D5
 G = < a,b,c,d | a20=c5=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a9, bc=cb, bd=db, dcd=c-1 >

Subgroups: 556 in 92 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2xC4, Q8, D5, C10, C10, C2xQ8, Dic5, Dic5, C20, C20, D10, C52, Dic10, Dic10, C4xD5, C5xQ8, C5:D5, C5xC10, Q8xD5, C5xDic5, C52:6C4, C5xC20, C2xC5:D5, Dic5:2D5, C52:2Q8, C5xDic10, C4xC5:D5, Dic10:D5
Quotients: C1, C2, C22, Q8, C23, D5, C2xQ8, D10, C22xD5, Q8xD5, D52, C2xD52, Dic10:D5

Smallest permutation representation of Dic10:D5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 25 11 35)(2 24 12 34)(3 23 13 33)(4 22 14 32)(5 21 15 31)(6 40 16 30)(7 39 17 29)(8 38 18 28)(9 37 19 27)(10 36 20 26)
(1 5 9 13 17)(2 6 10 14 18)(3 7 11 15 19)(4 8 12 16 20)(21 37 33 29 25)(22 38 34 30 26)(23 39 35 31 27)(24 40 36 32 28)
(1 17)(2 6)(3 15)(5 13)(7 11)(8 20)(10 18)(12 16)(21 33)(23 31)(24 40)(25 29)(26 38)(28 36)(30 34)(35 39)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,17)(2,6)(3,15)(5,13)(7,11)(8,20)(10,18)(12,16)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,17)(2,6)(3,15)(5,13)(7,11)(8,20)(10,18)(12,16)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,25,11,35),(2,24,12,34),(3,23,13,33),(4,22,14,32),(5,21,15,31),(6,40,16,30),(7,39,17,29),(8,38,18,28),(9,37,19,27),(10,36,20,26)], [(1,5,9,13,17),(2,6,10,14,18),(3,7,11,15,19),(4,8,12,16,20),(21,37,33,29,25),(22,38,34,30,26),(23,39,35,31,27),(24,40,36,32,28)], [(1,17),(2,6),(3,15),(5,13),(7,11),(8,20),(10,18),(12,16),(21,33),(23,31),(24,40),(25,29),(26,38),(28,36),(30,34),(35,39)]])

46 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H20A···20L20M···20T
order122244444455555555101010101010101020···2020···20
size1125252101010105022224444222244444···420···20

46 irreducible representations

dim1111122224444
type+++++-+++-++
imageC1C2C2C2C2Q8D5D10D10Q8xD5D52C2xD52Dic10:D5
kernelDic10:D5Dic5:2D5C52:2Q8C5xDic10C4xC5:D5C5:D5Dic10Dic5C20C5C4C2C1
# reps1222124844448

Matrix representation of Dic10:D5 in GL6(F41)

34400000
100000
0004000
001000
0000400
0000040
,
4000000
710000
00151500
00152600
000010
000001
,
100000
010000
001000
000100
0000040
000016
,
100000
34400000
0040000
0004000
000016
0000040

G:=sub<GL(6,GF(41))| [34,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,7,0,0,0,0,0,1,0,0,0,0,0,0,15,15,0,0,0,0,15,26,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6],[1,34,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,6,40] >;

Dic10:D5 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes D_5
% in TeX

G:=Group("Dic10:D5");
// GroupNames label

G:=SmallGroup(400,166);
// by ID

G=gap.SmallGroup(400,166);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,55,218,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^5=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<