Copied to
clipboard

G = C4oD4xD13order 416 = 25·13

Direct product of C4oD4 and D13

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4oD4xD13, D4:7D26, Q8:6D26, D52:10C22, C52.25C23, C26.11C24, D26.6C23, Dic26:10C22, Dic13.17C23, (C2xC4):7D26, (D4xD13):6C2, (Q8xD13):6C2, (C2xC52):4C22, D52:5C2:7C2, D52:C2:6C2, D4:2D13:6C2, (D4xC13):8C22, (C4xD13):7C22, C13:D4:4C22, (C2xC26).3C23, (Q8xC13):7C22, C2.12(C23xD13), C4.25(C22xD13), C22.2(C22xD13), (C2xDic13):10C22, (C22xD13).34C22, (C2xC4xD13):6C2, C13:4(C2xC4oD4), (C13xC4oD4):3C2, SmallGroup(416,222)

Series: Derived Chief Lower central Upper central

C1C26 — C4oD4xD13
C1C13C26D26C22xD13C2xC4xD13 — C4oD4xD13
C13C26 — C4oD4xD13
C1C4C4oD4

Generators and relations for C4oD4xD13
 G = < a,b,c,d,e | a4=c2=d13=e2=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, cbc=a2b, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1040 in 164 conjugacy classes, 87 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C13, C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, D13, D13, C26, C26, C2xC4oD4, Dic13, Dic13, C52, C52, D26, D26, D26, C2xC26, Dic26, C4xD13, C4xD13, D52, C2xDic13, C13:D4, C2xC52, D4xC13, Q8xC13, C22xD13, C2xC4xD13, D52:5C2, D4xD13, D4:2D13, Q8xD13, D52:C2, C13xC4oD4, C4oD4xD13
Quotients: C1, C2, C22, C23, C4oD4, C24, D13, C2xC4oD4, D26, C22xD13, C23xD13, C4oD4xD13

Smallest permutation representation of C4oD4xD13
On 104 points
Generators in S104
(1 52 16 36)(2 40 17 37)(3 41 18 38)(4 42 19 39)(5 43 20 27)(6 44 21 28)(7 45 22 29)(8 46 23 30)(9 47 24 31)(10 48 25 32)(11 49 26 33)(12 50 14 34)(13 51 15 35)(53 95 77 87)(54 96 78 88)(55 97 66 89)(56 98 67 90)(57 99 68 91)(58 100 69 79)(59 101 70 80)(60 102 71 81)(61 103 72 82)(62 104 73 83)(63 92 74 84)(64 93 75 85)(65 94 76 86)
(1 61 16 72)(2 62 17 73)(3 63 18 74)(4 64 19 75)(5 65 20 76)(6 53 21 77)(7 54 22 78)(8 55 23 66)(9 56 24 67)(10 57 25 68)(11 58 26 69)(12 59 14 70)(13 60 15 71)(27 86 43 94)(28 87 44 95)(29 88 45 96)(30 89 46 97)(31 90 47 98)(32 91 48 99)(33 79 49 100)(34 80 50 101)(35 81 51 102)(36 82 52 103)(37 83 40 104)(38 84 41 92)(39 85 42 93)
(53 77)(54 78)(55 66)(56 67)(57 68)(58 69)(59 70)(60 71)(61 72)(62 73)(63 74)(64 75)(65 76)(79 100)(80 101)(81 102)(82 103)(83 104)(84 92)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(91 99)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 17)(15 16)(18 26)(19 25)(20 24)(21 23)(27 31)(28 30)(32 39)(33 38)(34 37)(35 36)(40 50)(41 49)(42 48)(43 47)(44 46)(51 52)(53 55)(56 65)(57 64)(58 63)(59 62)(60 61)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(79 84)(80 83)(81 82)(85 91)(86 90)(87 89)(92 100)(93 99)(94 98)(95 97)(101 104)(102 103)

G:=sub<Sym(104)| (1,52,16,36)(2,40,17,37)(3,41,18,38)(4,42,19,39)(5,43,20,27)(6,44,21,28)(7,45,22,29)(8,46,23,30)(9,47,24,31)(10,48,25,32)(11,49,26,33)(12,50,14,34)(13,51,15,35)(53,95,77,87)(54,96,78,88)(55,97,66,89)(56,98,67,90)(57,99,68,91)(58,100,69,79)(59,101,70,80)(60,102,71,81)(61,103,72,82)(62,104,73,83)(63,92,74,84)(64,93,75,85)(65,94,76,86), (1,61,16,72)(2,62,17,73)(3,63,18,74)(4,64,19,75)(5,65,20,76)(6,53,21,77)(7,54,22,78)(8,55,23,66)(9,56,24,67)(10,57,25,68)(11,58,26,69)(12,59,14,70)(13,60,15,71)(27,86,43,94)(28,87,44,95)(29,88,45,96)(30,89,46,97)(31,90,47,98)(32,91,48,99)(33,79,49,100)(34,80,50,101)(35,81,51,102)(36,82,52,103)(37,83,40,104)(38,84,41,92)(39,85,42,93), (53,77)(54,78)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(79,100)(80,101)(81,102)(82,103)(83,104)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,99), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,31)(28,30)(32,39)(33,38)(34,37)(35,36)(40,50)(41,49)(42,48)(43,47)(44,46)(51,52)(53,55)(56,65)(57,64)(58,63)(59,62)(60,61)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,84)(80,83)(81,82)(85,91)(86,90)(87,89)(92,100)(93,99)(94,98)(95,97)(101,104)(102,103)>;

G:=Group( (1,52,16,36)(2,40,17,37)(3,41,18,38)(4,42,19,39)(5,43,20,27)(6,44,21,28)(7,45,22,29)(8,46,23,30)(9,47,24,31)(10,48,25,32)(11,49,26,33)(12,50,14,34)(13,51,15,35)(53,95,77,87)(54,96,78,88)(55,97,66,89)(56,98,67,90)(57,99,68,91)(58,100,69,79)(59,101,70,80)(60,102,71,81)(61,103,72,82)(62,104,73,83)(63,92,74,84)(64,93,75,85)(65,94,76,86), (1,61,16,72)(2,62,17,73)(3,63,18,74)(4,64,19,75)(5,65,20,76)(6,53,21,77)(7,54,22,78)(8,55,23,66)(9,56,24,67)(10,57,25,68)(11,58,26,69)(12,59,14,70)(13,60,15,71)(27,86,43,94)(28,87,44,95)(29,88,45,96)(30,89,46,97)(31,90,47,98)(32,91,48,99)(33,79,49,100)(34,80,50,101)(35,81,51,102)(36,82,52,103)(37,83,40,104)(38,84,41,92)(39,85,42,93), (53,77)(54,78)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(79,100)(80,101)(81,102)(82,103)(83,104)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,99), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,31)(28,30)(32,39)(33,38)(34,37)(35,36)(40,50)(41,49)(42,48)(43,47)(44,46)(51,52)(53,55)(56,65)(57,64)(58,63)(59,62)(60,61)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,84)(80,83)(81,82)(85,91)(86,90)(87,89)(92,100)(93,99)(94,98)(95,97)(101,104)(102,103) );

G=PermutationGroup([[(1,52,16,36),(2,40,17,37),(3,41,18,38),(4,42,19,39),(5,43,20,27),(6,44,21,28),(7,45,22,29),(8,46,23,30),(9,47,24,31),(10,48,25,32),(11,49,26,33),(12,50,14,34),(13,51,15,35),(53,95,77,87),(54,96,78,88),(55,97,66,89),(56,98,67,90),(57,99,68,91),(58,100,69,79),(59,101,70,80),(60,102,71,81),(61,103,72,82),(62,104,73,83),(63,92,74,84),(64,93,75,85),(65,94,76,86)], [(1,61,16,72),(2,62,17,73),(3,63,18,74),(4,64,19,75),(5,65,20,76),(6,53,21,77),(7,54,22,78),(8,55,23,66),(9,56,24,67),(10,57,25,68),(11,58,26,69),(12,59,14,70),(13,60,15,71),(27,86,43,94),(28,87,44,95),(29,88,45,96),(30,89,46,97),(31,90,47,98),(32,91,48,99),(33,79,49,100),(34,80,50,101),(35,81,51,102),(36,82,52,103),(37,83,40,104),(38,84,41,92),(39,85,42,93)], [(53,77),(54,78),(55,66),(56,67),(57,68),(58,69),(59,70),(60,71),(61,72),(62,73),(63,74),(64,75),(65,76),(79,100),(80,101),(81,102),(82,103),(83,104),(84,92),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(91,99)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,17),(15,16),(18,26),(19,25),(20,24),(21,23),(27,31),(28,30),(32,39),(33,38),(34,37),(35,36),(40,50),(41,49),(42,48),(43,47),(44,46),(51,52),(53,55),(56,65),(57,64),(58,63),(59,62),(60,61),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(79,84),(80,83),(81,82),(85,91),(86,90),(87,89),(92,100),(93,99),(94,98),(95,97),(101,104),(102,103)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J13A···13F26A···26F26G···26X52A···52L52M···52AD
order1222222222444444444413···1326···2626···2652···5252···52
size1122213132626261122213132626262···22···24···42···24···4

80 irreducible representations

dim11111111222224
type++++++++++++
imageC1C2C2C2C2C2C2C2C4oD4D13D26D26D26C4oD4xD13
kernelC4oD4xD13C2xC4xD13D52:5C2D4xD13D4:2D13Q8xD13D52:C2C13xC4oD4D13C4oD4C2xC4D4Q8C1
# reps13333111461818612

Matrix representation of C4oD4xD13 in GL4(F53) generated by

52000
05200
00300
00030
,
52000
05200
005230
0071
,
1000
0100
0010
004652
,
32100
163200
0010
0001
,
133900
124000
0010
0001
G:=sub<GL(4,GF(53))| [52,0,0,0,0,52,0,0,0,0,30,0,0,0,0,30],[52,0,0,0,0,52,0,0,0,0,52,7,0,0,30,1],[1,0,0,0,0,1,0,0,0,0,1,46,0,0,0,52],[32,16,0,0,1,32,0,0,0,0,1,0,0,0,0,1],[13,12,0,0,39,40,0,0,0,0,1,0,0,0,0,1] >;

C4oD4xD13 in GAP, Magma, Sage, TeX

C_4\circ D_4\times D_{13}
% in TeX

G:=Group("C4oD4xD13");
// GroupNames label

G:=SmallGroup(416,222);
// by ID

G=gap.SmallGroup(416,222);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,86,297,13829]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^13=e^2=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<