Copied to
clipboard

G = (Q8xHe3):C2order 432 = 24·33

4th semidirect product of Q8xHe3 and C2 acting faithfully

metabelian, supersoluble, monomial

Aliases: (Q8xHe3):4C2, C12:S3:4C6, C12.22(S3xC6), He3:4D4:9C2, (C3xC12).29D6, (Q8xC32):4C6, (Q8xC32):6S3, He3:11(C4oD4), Q8:4(C32:C6), C12.26D6:2C3, C32:3(Q8:3S3), (C2xHe3).26C23, (C4xHe3).23C22, C32:C12.14C22, (C4xC3:S3):3C6, C6.40(S3xC2xC6), (C4xC32:C6):7C2, (C3xC12).7(C2xC6), C32:3(C3xC4oD4), C4.7(C2xC32:C6), (C3xC6).8(C22xC6), (C3xQ8).30(C3xS3), C3.2(C3xQ8:3S3), C3:Dic3.11(C2xC6), (C3xC6).32(C22xS3), C2.9(C22xC32:C6), (C2xC32:C6).12C22, (C2xC3:S3).3(C2xC6), SmallGroup(432,369)

Series: Derived Chief Lower central Upper central

C1C3xC6 — (Q8xHe3):C2
C1C3C32C3xC6C2xHe3C2xC32:C6C4xC32:C6 — (Q8xHe3):C2
C32C3xC6 — (Q8xHe3):C2
C1C2Q8

Generators and relations for (Q8xHe3):C2
 G = < a,b,c,d,e,f | a4=c3=d3=e3=f2=1, b2=a2, bab-1=faf=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf=c-1, de=ed, fdf=d-1, ef=fe >

Subgroups: 709 in 152 conjugacy classes, 52 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, C4xS3, D12, C2xC12, C3xD4, C3xQ8, C3xQ8, He3, C3xDic3, C3:Dic3, C3xC12, C3xC12, S3xC6, C2xC3:S3, Q8:3S3, C3xC4oD4, C32:C6, C2xHe3, S3xC12, C3xD12, C4xC3:S3, C12:S3, Q8xC32, Q8xC32, C32:C12, C4xHe3, C2xC32:C6, C3xQ8:3S3, C12.26D6, C4xC32:C6, He3:4D4, Q8xHe3, (Q8xHe3):C2
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S3xC6, Q8:3S3, C3xC4oD4, C32:C6, S3xC2xC6, C2xC32:C6, C3xQ8:3S3, C22xC32:C6, (Q8xHe3):C2

Smallest permutation representation of (Q8xHe3):C2
On 72 points
Generators in S72
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 9 3 11)(2 12 4 10)(5 42 7 44)(6 41 8 43)(13 53 15 55)(14 56 16 54)(17 57 19 59)(18 60 20 58)(21 68 23 66)(22 67 24 65)(25 49 27 51)(26 52 28 50)(29 46 31 48)(30 45 32 47)(33 63 35 61)(34 62 36 64)(37 72 39 70)(38 71 40 69)
(1 16 8)(2 13 5)(3 14 6)(4 15 7)(9 54 43)(10 55 44)(11 56 41)(12 53 42)(17 45 65)(18 46 66)(19 47 67)(20 48 68)(21 60 31)(22 57 32)(23 58 29)(24 59 30)(25 71 61)(26 72 62)(27 69 63)(28 70 64)(33 49 40)(34 50 37)(35 51 38)(36 52 39)
(1 33 29)(2 34 30)(3 35 31)(4 36 32)(5 37 59)(6 38 60)(7 39 57)(8 40 58)(9 63 46)(10 64 47)(11 61 48)(12 62 45)(13 50 24)(14 51 21)(15 52 22)(16 49 23)(17 42 72)(18 43 69)(19 44 70)(20 41 71)(25 68 56)(26 65 53)(27 66 54)(28 67 55)
(5 59 37)(6 60 38)(7 57 39)(8 58 40)(13 50 24)(14 51 21)(15 52 22)(16 49 23)(17 72 42)(18 69 43)(19 70 44)(20 71 41)(25 68 56)(26 65 53)(27 66 54)(28 67 55)
(1 12)(2 11)(3 10)(4 9)(5 56)(6 55)(7 54)(8 53)(13 41)(14 44)(15 43)(16 42)(17 49)(18 52)(19 51)(20 50)(21 70)(22 69)(23 72)(24 71)(25 59)(26 58)(27 57)(28 60)(29 62)(30 61)(31 64)(32 63)(33 45)(34 48)(35 47)(36 46)(37 68)(38 67)(39 66)(40 65)

G:=sub<Sym(72)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,9,3,11)(2,12,4,10)(5,42,7,44)(6,41,8,43)(13,53,15,55)(14,56,16,54)(17,57,19,59)(18,60,20,58)(21,68,23,66)(22,67,24,65)(25,49,27,51)(26,52,28,50)(29,46,31,48)(30,45,32,47)(33,63,35,61)(34,62,36,64)(37,72,39,70)(38,71,40,69), (1,16,8)(2,13,5)(3,14,6)(4,15,7)(9,54,43)(10,55,44)(11,56,41)(12,53,42)(17,45,65)(18,46,66)(19,47,67)(20,48,68)(21,60,31)(22,57,32)(23,58,29)(24,59,30)(25,71,61)(26,72,62)(27,69,63)(28,70,64)(33,49,40)(34,50,37)(35,51,38)(36,52,39), (1,33,29)(2,34,30)(3,35,31)(4,36,32)(5,37,59)(6,38,60)(7,39,57)(8,40,58)(9,63,46)(10,64,47)(11,61,48)(12,62,45)(13,50,24)(14,51,21)(15,52,22)(16,49,23)(17,42,72)(18,43,69)(19,44,70)(20,41,71)(25,68,56)(26,65,53)(27,66,54)(28,67,55), (5,59,37)(6,60,38)(7,57,39)(8,58,40)(13,50,24)(14,51,21)(15,52,22)(16,49,23)(17,72,42)(18,69,43)(19,70,44)(20,71,41)(25,68,56)(26,65,53)(27,66,54)(28,67,55), (1,12)(2,11)(3,10)(4,9)(5,56)(6,55)(7,54)(8,53)(13,41)(14,44)(15,43)(16,42)(17,49)(18,52)(19,51)(20,50)(21,70)(22,69)(23,72)(24,71)(25,59)(26,58)(27,57)(28,60)(29,62)(30,61)(31,64)(32,63)(33,45)(34,48)(35,47)(36,46)(37,68)(38,67)(39,66)(40,65)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,9,3,11)(2,12,4,10)(5,42,7,44)(6,41,8,43)(13,53,15,55)(14,56,16,54)(17,57,19,59)(18,60,20,58)(21,68,23,66)(22,67,24,65)(25,49,27,51)(26,52,28,50)(29,46,31,48)(30,45,32,47)(33,63,35,61)(34,62,36,64)(37,72,39,70)(38,71,40,69), (1,16,8)(2,13,5)(3,14,6)(4,15,7)(9,54,43)(10,55,44)(11,56,41)(12,53,42)(17,45,65)(18,46,66)(19,47,67)(20,48,68)(21,60,31)(22,57,32)(23,58,29)(24,59,30)(25,71,61)(26,72,62)(27,69,63)(28,70,64)(33,49,40)(34,50,37)(35,51,38)(36,52,39), (1,33,29)(2,34,30)(3,35,31)(4,36,32)(5,37,59)(6,38,60)(7,39,57)(8,40,58)(9,63,46)(10,64,47)(11,61,48)(12,62,45)(13,50,24)(14,51,21)(15,52,22)(16,49,23)(17,42,72)(18,43,69)(19,44,70)(20,41,71)(25,68,56)(26,65,53)(27,66,54)(28,67,55), (5,59,37)(6,60,38)(7,57,39)(8,58,40)(13,50,24)(14,51,21)(15,52,22)(16,49,23)(17,72,42)(18,69,43)(19,70,44)(20,71,41)(25,68,56)(26,65,53)(27,66,54)(28,67,55), (1,12)(2,11)(3,10)(4,9)(5,56)(6,55)(7,54)(8,53)(13,41)(14,44)(15,43)(16,42)(17,49)(18,52)(19,51)(20,50)(21,70)(22,69)(23,72)(24,71)(25,59)(26,58)(27,57)(28,60)(29,62)(30,61)(31,64)(32,63)(33,45)(34,48)(35,47)(36,46)(37,68)(38,67)(39,66)(40,65) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,9,3,11),(2,12,4,10),(5,42,7,44),(6,41,8,43),(13,53,15,55),(14,56,16,54),(17,57,19,59),(18,60,20,58),(21,68,23,66),(22,67,24,65),(25,49,27,51),(26,52,28,50),(29,46,31,48),(30,45,32,47),(33,63,35,61),(34,62,36,64),(37,72,39,70),(38,71,40,69)], [(1,16,8),(2,13,5),(3,14,6),(4,15,7),(9,54,43),(10,55,44),(11,56,41),(12,53,42),(17,45,65),(18,46,66),(19,47,67),(20,48,68),(21,60,31),(22,57,32),(23,58,29),(24,59,30),(25,71,61),(26,72,62),(27,69,63),(28,70,64),(33,49,40),(34,50,37),(35,51,38),(36,52,39)], [(1,33,29),(2,34,30),(3,35,31),(4,36,32),(5,37,59),(6,38,60),(7,39,57),(8,40,58),(9,63,46),(10,64,47),(11,61,48),(12,62,45),(13,50,24),(14,51,21),(15,52,22),(16,49,23),(17,42,72),(18,43,69),(19,44,70),(20,41,71),(25,68,56),(26,65,53),(27,66,54),(28,67,55)], [(5,59,37),(6,60,38),(7,57,39),(8,58,40),(13,50,24),(14,51,21),(15,52,22),(16,49,23),(17,72,42),(18,69,43),(19,70,44),(20,71,41),(25,68,56),(26,65,53),(27,66,54),(28,67,55)], [(1,12),(2,11),(3,10),(4,9),(5,56),(6,55),(7,54),(8,53),(13,41),(14,44),(15,43),(16,42),(17,49),(18,52),(19,51),(20,50),(21,70),(22,69),(23,72),(24,71),(25,59),(26,58),(27,57),(28,60),(29,62),(30,61),(31,64),(32,63),(33,45),(34,48),(35,47),(36,46),(37,68),(38,67),(39,66),(40,65)]])

50 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F4A4B4C4D4E6A6B6C6D6E6F6G···6L12A12B12C12D···12I12J12K12L12M12N···12V
order12222333333444446666666···612121212···121212121212···12
size111818182336662229923366618···184446···6999912···12

50 irreducible representations

dim11111111122222224466
type++++++++++
imageC1C2C2C2C3C6C6C6(Q8xHe3):C2S3D6C4oD4C3xS3S3xC6C3xC4oD4Q8:3S3C3xQ8:3S3C32:C6C2xC32:C6
kernel(Q8xHe3):C2C4xC32:C6He3:4D4Q8xHe3C12.26D6C4xC3:S3C12:S3Q8xC32C1Q8xC32C3xC12He3C3xQ8C12C32C32C3Q8C4
# reps1331266211322641213

Matrix representation of (Q8xHe3):C2 in GL10(F13)

8000000000
0800000000
0050000000
0005000000
00001200000
00000120000
00000012000
00000001200
00000000120
00000000012
,
0010000000
0001000000
12000000000
01200000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
0100000000
121200000000
0001000000
001212000000
00000012100
000011111200
00000012010
00000012001
00000012000
00001012000
,
1000000000
0100000000
0010000000
0001000000
00001210000
00001200000
00001200100
000001121200
00001200001
000001001212
,
9000000000
0900000000
0090000000
0009000000
0000100000
0000010000
000011121200
0000001000
0000000001
000011001212
,
0008000000
0080000000
0500000000
5000000000
00000120000
00001200000
00000000120
000012120011
00000012000
000012121100

G:=sub<GL(10,GF(13))| [8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12],[0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,11,12,12,12,12,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,12,0,12,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,12,0,12,0,0,0,0,12,0,0,12,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,1,0,0] >;

(Q8xHe3):C2 in GAP, Magma, Sage, TeX

(Q_8\times {\rm He}_3)\rtimes C_2
% in TeX

G:=Group("(Q8xHe3):C2");
// GroupNames label

G:=SmallGroup(432,369);
// by ID

G=gap.SmallGroup(432,369);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,303,142,4037,1034,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^3=d^3=e^3=f^2=1,b^2=a^2,b*a*b^-1=f*a*f=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<