Copied to
clipboard

G = C3xC12.D6order 432 = 24·33

Direct product of C3 and C12.D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC12.D6, C62.99D6, C12.39(S3xC6), (D4xC33):7C2, C32:7D4:8C6, (C3xC12).149D6, (D4xC32):12C6, (D4xC32):10S3, C33:31(C4oD4), C62.30(C2xC6), C32:4Q8:12C6, (C3xC62).38C22, (C32xC6).90C23, C32:26(D4:2S3), (C32xC12).54C22, (C4xC3:S3):9C6, D4:2(C3xC3:S3), C4.5(C6xC3:S3), C6.57(S3xC2xC6), (C3xD4):3(C3xS3), (C12xC3:S3):11C2, (C3xD4):5(C3:S3), C12.56(C2xC3:S3), C3:5(C3xD4:2S3), (C2xC6).16(S3xC6), C22.1(C6xC3:S3), (C3xC12).58(C2xC6), (C6xC3:Dic3):17C2, (C2xC3:Dic3):13C6, C32:14(C3xC4oD4), C6.57(C22xC3:S3), (C6xC3:S3).62C22, (C3xC32:7D4):10C2, C3:Dic3.23(C2xC6), (C3xC6).64(C22xC6), (C3xC32:4Q8):14C2, (C3xC6).179(C22xS3), (C3xC3:Dic3).60C22, C2.7(C2xC6xC3:S3), (C2xC6).11(C2xC3:S3), (C2xC3:S3).23(C2xC6), SmallGroup(432,715)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xC12.D6
C1C3C32C3xC6C32xC6C6xC3:S3C12xC3:S3 — C3xC12.D6
C32C3xC6 — C3xC12.D6
C1C6C3xD4

Generators and relations for C3xC12.D6
 G = < a,b,c,d | a3=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, cbc-1=b7, dbd-1=b-1, dcd-1=b6c-1 >

Subgroups: 852 in 304 conjugacy classes, 94 normal (26 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, D4, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2xC6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C3xD4, C3xD4, C3xQ8, C33, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, C3xC12, C3xC12, S3xC6, C2xC3:S3, C62, C62, D4:2S3, C3xC4oD4, C3xC3:S3, C32xC6, C32xC6, C3xDic6, S3xC12, C6xDic3, C3xC3:D4, C32:4Q8, C4xC3:S3, C2xC3:Dic3, C32:7D4, D4xC32, D4xC32, D4xC32, C3xC3:Dic3, C3xC3:Dic3, C32xC12, C6xC3:S3, C3xC62, C3xD4:2S3, C12.D6, C3xC32:4Q8, C12xC3:S3, C6xC3:Dic3, C3xC32:7D4, D4xC33, C3xC12.D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C3:S3, C22xS3, C22xC6, S3xC6, C2xC3:S3, D4:2S3, C3xC4oD4, C3xC3:S3, S3xC2xC6, C22xC3:S3, C6xC3:S3, C3xD4:2S3, C12.D6, C2xC6xC3:S3, C3xC12.D6

Smallest permutation representation of C3xC12.D6
On 72 points
Generators in S72
(1 62 58)(2 63 59)(3 64 60)(4 65 49)(5 66 50)(6 67 51)(7 68 52)(8 69 53)(9 70 54)(10 71 55)(11 72 56)(12 61 57)(13 43 35)(14 44 36)(15 45 25)(16 46 26)(17 47 27)(18 48 28)(19 37 29)(20 38 30)(21 39 31)(22 40 32)(23 41 33)(24 42 34)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 54 66)(2 49 67 8 55 61)(3 56 68)(4 51 69 10 57 63)(5 58 70)(6 53 71 12 59 65)(7 60 72)(9 50 62)(11 52 64)(13 39 27)(14 46 28 20 40 34)(15 41 29)(16 48 30 22 42 36)(17 43 31)(18 38 32 24 44 26)(19 45 33)(21 47 35)(23 37 25)
(1 38 7 44)(2 37 8 43)(3 48 9 42)(4 47 10 41)(5 46 11 40)(6 45 12 39)(13 59 19 53)(14 58 20 52)(15 57 21 51)(16 56 22 50)(17 55 23 49)(18 54 24 60)(25 61 31 67)(26 72 32 66)(27 71 33 65)(28 70 34 64)(29 69 35 63)(30 68 36 62)

G:=sub<Sym(72)| (1,62,58)(2,63,59)(3,64,60)(4,65,49)(5,66,50)(6,67,51)(7,68,52)(8,69,53)(9,70,54)(10,71,55)(11,72,56)(12,61,57)(13,43,35)(14,44,36)(15,45,25)(16,46,26)(17,47,27)(18,48,28)(19,37,29)(20,38,30)(21,39,31)(22,40,32)(23,41,33)(24,42,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,66)(2,49,67,8,55,61)(3,56,68)(4,51,69,10,57,63)(5,58,70)(6,53,71,12,59,65)(7,60,72)(9,50,62)(11,52,64)(13,39,27)(14,46,28,20,40,34)(15,41,29)(16,48,30,22,42,36)(17,43,31)(18,38,32,24,44,26)(19,45,33)(21,47,35)(23,37,25), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,59,19,53)(14,58,20,52)(15,57,21,51)(16,56,22,50)(17,55,23,49)(18,54,24,60)(25,61,31,67)(26,72,32,66)(27,71,33,65)(28,70,34,64)(29,69,35,63)(30,68,36,62)>;

G:=Group( (1,62,58)(2,63,59)(3,64,60)(4,65,49)(5,66,50)(6,67,51)(7,68,52)(8,69,53)(9,70,54)(10,71,55)(11,72,56)(12,61,57)(13,43,35)(14,44,36)(15,45,25)(16,46,26)(17,47,27)(18,48,28)(19,37,29)(20,38,30)(21,39,31)(22,40,32)(23,41,33)(24,42,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,54,66)(2,49,67,8,55,61)(3,56,68)(4,51,69,10,57,63)(5,58,70)(6,53,71,12,59,65)(7,60,72)(9,50,62)(11,52,64)(13,39,27)(14,46,28,20,40,34)(15,41,29)(16,48,30,22,42,36)(17,43,31)(18,38,32,24,44,26)(19,45,33)(21,47,35)(23,37,25), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,59,19,53)(14,58,20,52)(15,57,21,51)(16,56,22,50)(17,55,23,49)(18,54,24,60)(25,61,31,67)(26,72,32,66)(27,71,33,65)(28,70,34,64)(29,69,35,63)(30,68,36,62) );

G=PermutationGroup([[(1,62,58),(2,63,59),(3,64,60),(4,65,49),(5,66,50),(6,67,51),(7,68,52),(8,69,53),(9,70,54),(10,71,55),(11,72,56),(12,61,57),(13,43,35),(14,44,36),(15,45,25),(16,46,26),(17,47,27),(18,48,28),(19,37,29),(20,38,30),(21,39,31),(22,40,32),(23,41,33),(24,42,34)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,54,66),(2,49,67,8,55,61),(3,56,68),(4,51,69,10,57,63),(5,58,70),(6,53,71,12,59,65),(7,60,72),(9,50,62),(11,52,64),(13,39,27),(14,46,28,20,40,34),(15,41,29),(16,48,30,22,42,36),(17,43,31),(18,38,32,24,44,26),(19,45,33),(21,47,35),(23,37,25)], [(1,38,7,44),(2,37,8,43),(3,48,9,42),(4,47,10,41),(5,46,11,40),(6,45,12,39),(13,59,19,53),(14,58,20,52),(15,57,21,51),(16,56,22,50),(17,55,23,49),(18,54,24,60),(25,61,31,67),(26,72,32,66),(27,71,33,65),(28,70,34,64),(29,69,35,63),(30,68,36,62)]])

90 conjugacy classes

class 1 2A2B2C2D3A3B3C···3N4A4B4C4D4E6A6B6C···6R6S···6AP6AQ6AR12A12B12C···12N12O12P12Q12R12S12T12U12V
order12222333···344444666···66···666121212···121212121212121212
size112218112···22991818112···24···41818224···4999918181818

90 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D6D6C4oD4C3xS3S3xC6S3xC6C3xC4oD4D4:2S3C3xD4:2S3
kernelC3xC12.D6C3xC32:4Q8C12xC3:S3C6xC3:Dic3C3xC32:7D4D4xC33C12.D6C32:4Q8C4xC3:S3C2xC3:Dic3C32:7D4D4xC32D4xC32C3xC12C62C33C3xD4C12C2xC6C32C32C3
# reps11122122244244828816448

Matrix representation of C3xC12.D6 in GL6(F13)

300000
030000
003000
000300
000010
000001
,
1000000
140000
009100
000300
0000125
0000101
,
300000
1290000
001000
000100
000010
0000312
,
630000
1070000
0010100
005300
000051
000008

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,1,0,0,0,0,0,4,0,0,0,0,0,0,9,0,0,0,0,0,1,3,0,0,0,0,0,0,12,10,0,0,0,0,5,1],[3,12,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,12],[6,10,0,0,0,0,3,7,0,0,0,0,0,0,10,5,0,0,0,0,1,3,0,0,0,0,0,0,5,0,0,0,0,0,1,8] >;

C3xC12.D6 in GAP, Magma, Sage, TeX

C_3\times C_{12}.D_6
% in TeX

G:=Group("C3xC12.D6");
// GroupNames label

G:=SmallGroup(432,715);
// by ID

G=gap.SmallGroup(432,715);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,303,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^7,d*b*d^-1=b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<