Copied to
clipboard

G = C3xD6.3D6order 432 = 24·33

Direct product of C3 and D6.3D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xD6.3D6, C62.87D6, D6.3(S3xC6), C3:D12:2C6, (C6xDic3):6C6, (C6xDic3):9S3, (S3xDic3):5C6, (S3xC6).23D6, C6.D6:2C6, C32:2Q8:4C6, C32:7D4:5C6, C33:21(C4oD4), C62.23(C2xC6), Dic3.3(S3xC6), (C3xDic3).47D6, C32:24(C4oD12), (C3xC62).17C22, (C32xC6).30C23, C32:23(D4:2S3), (C32xDic3).27C22, C2.12(S32xC6), (C2xC6).13S32, C6.11(S3xC2xC6), C6.114(C2xS32), C3:4(C3xC4oD12), (C3xC3:D4):7S3, C3:D4:3(C3xS3), (C3xC3:D4):1C6, C22.1(C3xS32), (Dic3xC3xC6):9C2, C3:3(C3xD4:2S3), (S3xC6).3(C2xC6), (C2xC6).14(S3xC6), (C3xS3xDic3):12C2, C32:8(C3xC4oD4), (C2xDic3):3(C3xS3), (C3xC6.D6):5C2, (C32xC3:D4):1C2, (C3xC32:7D4):7C2, (S3xC3xC6).12C22, (C3xC3:D12):14C2, (C3xC32:2Q8):10C2, (C6xC3:S3).25C22, C3:Dic3.10(C2xC6), (C3xC6).21(C22xC6), (C3xDic3).4(C2xC6), (C3xC6).135(C22xS3), (C3xC3:Dic3).36C22, (C2xC3:S3).8(C2xC6), SmallGroup(432,652)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xD6.3D6
C1C3C32C3xC6C32xC6S3xC3xC6C3xS3xDic3 — C3xD6.3D6
C32C3xC6 — C3xD6.3D6
C1C6C2xC6

Generators and relations for C3xD6.3D6
 G = < a,b,c,d,e | a3=b6=c2=d6=1, e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=ece-1=b3c, ede-1=d-1 >

Subgroups: 712 in 218 conjugacy classes, 64 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, Q8, C32, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C3:D4, C2xC12, C3xD4, C3xQ8, C33, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C62, C62, C4oD12, D4:2S3, C3xC4oD4, S3xC32, C3xC3:S3, C32xC6, C32xC6, S3xDic3, C6.D6, C3:D12, C32:2Q8, C3xDic6, S3xC12, C3xD12, C6xDic3, C6xDic3, C3xC3:D4, C3xC3:D4, C32:7D4, C6xC12, D4xC32, C32xDic3, C3xC3:Dic3, S3xC3xC6, C6xC3:S3, C3xC62, D6.3D6, C3xC4oD12, C3xD4:2S3, C3xS3xDic3, C3xC6.D6, C3xC3:D12, C3xC32:2Q8, Dic3xC3xC6, C32xC3:D4, C3xC32:7D4, C3xD6.3D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S32, S3xC6, C4oD12, D4:2S3, C3xC4oD4, C2xS32, S3xC2xC6, C3xS32, D6.3D6, C3xC4oD12, C3xD4:2S3, S32xC6, C3xD6.3D6

Permutation representations of C3xD6.3D6
On 24 points - transitive group 24T1281
Generators in S24
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 16)(2 15)(3 14)(4 13)(5 18)(6 17)(7 22)(8 21)(9 20)(10 19)(11 24)(12 23)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 14 15 16 17 18)(19 24 23 22 21 20)
(1 12 4 9)(2 7 5 10)(3 8 6 11)(13 23 16 20)(14 24 17 21)(15 19 18 22)

G:=sub<Sym(24)| (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,14,15,16,17,18)(19,24,23,22,21,20), (1,12,4,9)(2,7,5,10)(3,8,6,11)(13,23,16,20)(14,24,17,21)(15,19,18,22)>;

G:=Group( (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,14,15,16,17,18)(19,24,23,22,21,20), (1,12,4,9)(2,7,5,10)(3,8,6,11)(13,23,16,20)(14,24,17,21)(15,19,18,22) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,16),(2,15),(3,14),(4,13),(5,18),(6,17),(7,22),(8,21),(9,20),(10,19),(11,24),(12,23)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,14,15,16,17,18),(19,24,23,22,21,20)], [(1,12,4,9),(2,7,5,10),(3,8,6,11),(13,23,16,20),(14,24,17,21),(15,19,18,22)]])

G:=TransitiveGroup(24,1281);

81 conjugacy classes

class 1 2A2B2C2D3A3B3C···3H3I3J3K4A4B4C4D4E6A6B6C···6P6Q···6AB6AC6AD6AE6AF6AG6AH6AI12A12B12C12D12E···12T12U12V12W12X12Y
order12222333···333344444666···66···666666661212121212···121212121212
size112618112···2444336618112···24···466121212181833336···61212121818

81 irreducible representations

dim11111111111111112222222222222244444444
type++++++++++++++-+
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6S3S3D6D6D6C4oD4C3xS3C3xS3S3xC6S3xC6S3xC6C4oD12C3xC4oD4C3xC4oD12S32D4:2S3C2xS32C3xS32D6.3D6C3xD4:2S3S32xC6C3xD6.3D6
kernelC3xD6.3D6C3xS3xDic3C3xC6.D6C3xC3:D12C3xC32:2Q8Dic3xC3xC6C32xC3:D4C3xC32:7D4D6.3D6S3xDic3C6.D6C3:D12C32:2Q8C6xDic3C3xC3:D4C32:7D4C6xDic3C3xC3:D4C3xDic3S3xC6C62C33C2xDic3C3:D4Dic3D6C2xC6C32C32C3C2xC6C32C6C22C3C3C2C1
# reps11111111222222221131222262444811122224

Matrix representation of C3xD6.3D6 in GL4(F7) generated by

4000
0400
0040
0004
,
0031
5460
1655
3320
,
3501
6445
2104
4010
,
4144
5653
3102
5244
,
4546
6060
3331
3420
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,5,1,3,0,4,6,3,3,6,5,2,1,0,5,0],[3,6,2,4,5,4,1,0,0,4,0,1,1,5,4,0],[4,5,3,5,1,6,1,2,4,5,0,4,4,3,2,4],[4,6,3,3,5,0,3,4,4,6,3,2,6,0,1,0] >;

C3xD6.3D6 in GAP, Magma, Sage, TeX

C_3\times D_6._3D_6
% in TeX

G:=Group("C3xD6.3D6");
// GroupNames label

G:=SmallGroup(432,652);
// by ID

G=gap.SmallGroup(432,652);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^2=d^6=1,e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e^-1=b^3*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<