Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3xC12

Direct product G=NxQ with N=C2xC6 and Q=C3xC12
dρLabelID
C62xC12432C6^2xC12432,730

Semidirect products G=N:Q with N=C2xC6 and Q=C3xC12
extensionφ:Q→Aut NdρLabelID
(C2xC6):(C3xC12) = C3xDic3xA4φ: C3xC12/C6C6 ⊆ Aut C2xC6366(C2xC6):(C3xC12)432,624
(C2xC6):2(C3xC12) = A4xC3xC12φ: C3xC12/C12C3 ⊆ Aut C2xC6108(C2xC6):2(C3xC12)432,697
(C2xC6):3(C3xC12) = C22:C4xC33φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6216(C2xC6):3(C3xC12)432,513
(C2xC6):4(C3xC12) = C32xC6.D4φ: C3xC12/C3xC6C2 ⊆ Aut C2xC672(C2xC6):4(C3xC12)432,479
(C2xC6):5(C3xC12) = Dic3xC62φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6144(C2xC6):5(C3xC12)432,708

Non-split extensions G=N.Q with N=C2xC6 and Q=C3xC12
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C3xC12) = A4xC36φ: C3xC12/C12C3 ⊆ Aut C2xC61083(C2xC6).1(C3xC12)432,325
(C2xC6).2(C3xC12) = C4xC9:A4φ: C3xC12/C12C3 ⊆ Aut C2xC61083(C2xC6).2(C3xC12)432,326
(C2xC6).3(C3xC12) = C12xC3.A4φ: C3xC12/C12C3 ⊆ Aut C2xC6108(C2xC6).3(C3xC12)432,331
(C2xC6).4(C3xC12) = C4xC32.A4φ: C3xC12/C12C3 ⊆ Aut C2xC6363(C2xC6).4(C3xC12)432,332
(C2xC6).5(C3xC12) = C4xC32:A4φ: C3xC12/C12C3 ⊆ Aut C2xC6363(C2xC6).5(C3xC12)432,333
(C2xC6).6(C3xC12) = C22:C4xC3xC9φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6216(C2xC6).6(C3xC12)432,203
(C2xC6).7(C3xC12) = C22:C4xHe3φ: C3xC12/C3xC6C2 ⊆ Aut C2xC672(C2xC6).7(C3xC12)432,204
(C2xC6).8(C3xC12) = C22:C4x3- 1+2φ: C3xC12/C3xC6C2 ⊆ Aut C2xC672(C2xC6).8(C3xC12)432,205
(C2xC6).9(C3xC12) = M4(2)xC3xC9φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6216(C2xC6).9(C3xC12)432,212
(C2xC6).10(C3xC12) = M4(2)xHe3φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6726(C2xC6).10(C3xC12)432,213
(C2xC6).11(C3xC12) = M4(2)x3- 1+2φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6726(C2xC6).11(C3xC12)432,214
(C2xC6).12(C3xC12) = M4(2)xC33φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6216(C2xC6).12(C3xC12)432,516
(C2xC6).13(C3xC12) = C3xC6xC3:C8φ: C3xC12/C3xC6C2 ⊆ Aut C2xC6144(C2xC6).13(C3xC12)432,469
(C2xC6).14(C3xC12) = C32xC4.Dic3φ: C3xC12/C3xC6C2 ⊆ Aut C2xC672(C2xC6).14(C3xC12)432,470
(C2xC6).15(C3xC12) = C2xC8xHe3central extension (φ=1)144(C2xC6).15(C3xC12)432,210
(C2xC6).16(C3xC12) = C2xC8x3- 1+2central extension (φ=1)144(C2xC6).16(C3xC12)432,211
(C2xC6).17(C3xC12) = C22xC4xHe3central extension (φ=1)144(C2xC6).17(C3xC12)432,401
(C2xC6).18(C3xC12) = C22xC4x3- 1+2central extension (φ=1)144(C2xC6).18(C3xC12)432,402

׿
x
:
Z
F
o
wr
Q
<