extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C3xC12) = A4xC36 | φ: C3xC12/C12 → C3 ⊆ Aut C2xC6 | 108 | 3 | (C2xC6).1(C3xC12) | 432,325 |
(C2xC6).2(C3xC12) = C4xC9:A4 | φ: C3xC12/C12 → C3 ⊆ Aut C2xC6 | 108 | 3 | (C2xC6).2(C3xC12) | 432,326 |
(C2xC6).3(C3xC12) = C12xC3.A4 | φ: C3xC12/C12 → C3 ⊆ Aut C2xC6 | 108 | | (C2xC6).3(C3xC12) | 432,331 |
(C2xC6).4(C3xC12) = C4xC32.A4 | φ: C3xC12/C12 → C3 ⊆ Aut C2xC6 | 36 | 3 | (C2xC6).4(C3xC12) | 432,332 |
(C2xC6).5(C3xC12) = C4xC32:A4 | φ: C3xC12/C12 → C3 ⊆ Aut C2xC6 | 36 | 3 | (C2xC6).5(C3xC12) | 432,333 |
(C2xC6).6(C3xC12) = C22:C4xC3xC9 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).6(C3xC12) | 432,203 |
(C2xC6).7(C3xC12) = C22:C4xHe3 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).7(C3xC12) | 432,204 |
(C2xC6).8(C3xC12) = C22:C4x3- 1+2 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).8(C3xC12) | 432,205 |
(C2xC6).9(C3xC12) = M4(2)xC3xC9 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).9(C3xC12) | 432,212 |
(C2xC6).10(C3xC12) = M4(2)xHe3 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 72 | 6 | (C2xC6).10(C3xC12) | 432,213 |
(C2xC6).11(C3xC12) = M4(2)x3- 1+2 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 72 | 6 | (C2xC6).11(C3xC12) | 432,214 |
(C2xC6).12(C3xC12) = M4(2)xC33 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 216 | | (C2xC6).12(C3xC12) | 432,516 |
(C2xC6).13(C3xC12) = C3xC6xC3:C8 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).13(C3xC12) | 432,469 |
(C2xC6).14(C3xC12) = C32xC4.Dic3 | φ: C3xC12/C3xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).14(C3xC12) | 432,470 |
(C2xC6).15(C3xC12) = C2xC8xHe3 | central extension (φ=1) | 144 | | (C2xC6).15(C3xC12) | 432,210 |
(C2xC6).16(C3xC12) = C2xC8x3- 1+2 | central extension (φ=1) | 144 | | (C2xC6).16(C3xC12) | 432,211 |
(C2xC6).17(C3xC12) = C22xC4xHe3 | central extension (φ=1) | 144 | | (C2xC6).17(C3xC12) | 432,401 |
(C2xC6).18(C3xC12) = C22xC4x3- 1+2 | central extension (φ=1) | 144 | | (C2xC6).18(C3xC12) | 432,402 |