Copied to
clipboard

G = M4(2)xHe3order 432 = 24·33

Direct product of M4(2) and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: M4(2)xHe3, C62.2C12, C12.41C62, C4.(C4xHe3), (C3xC24):7C6, C8:3(C2xHe3), C24.14(C3xC6), (C6xC12).10C6, (C3xC12).5C12, C12.8(C3xC12), C22.(C4xHe3), C6.26(C6xC12), (C8xHe3):11C2, (C4xHe3).10C4, (C32xM4(2)):C3, C4.6(C22xHe3), C32:7(C3xM4(2)), (C22xHe3).3C4, (C4xHe3).55C22, C3.2(C32xM4(2)), (C3xM4(2)).2C32, C2.5(C2xC4xHe3), (C2xC4xHe3).14C2, (C2xC4).2(C2xHe3), (C2xC12).14(C3xC6), (C3xC12).68(C2xC6), (C2xC6).10(C3xC12), (C3xC6).34(C2xC12), (C2xHe3).39(C2xC4), SmallGroup(432,213)

Series: Derived Chief Lower central Upper central

C1C6 — M4(2)xHe3
C1C2C6C12C3xC12C4xHe3C8xHe3 — M4(2)xHe3
C1C6 — M4(2)xHe3
C1C12 — M4(2)xHe3

Generators and relations for M4(2)xHe3
 G = < a,b,c,d,e | a8=b2=c3=d3=e3=1, bab=a5, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 209 in 110 conjugacy classes, 63 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2xC4, C32, C12, C12, C2xC6, C2xC6, M4(2), C3xC6, C3xC6, C24, C24, C2xC12, C2xC12, He3, C3xC12, C62, C3xM4(2), C3xM4(2), C2xHe3, C2xHe3, C3xC24, C6xC12, C4xHe3, C22xHe3, C32xM4(2), C8xHe3, C2xC4xHe3, M4(2)xHe3
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C32, C12, C2xC6, M4(2), C3xC6, C2xC12, He3, C3xC12, C62, C3xM4(2), C2xHe3, C6xC12, C4xHe3, C22xHe3, C32xM4(2), C2xC4xHe3, M4(2)xHe3

Smallest permutation representation of M4(2)xHe3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)(41 45)(43 47)(49 53)(51 55)(58 62)(60 64)(66 70)(68 72)
(1 50 67)(2 51 68)(3 52 69)(4 53 70)(5 54 71)(6 55 72)(7 56 65)(8 49 66)(9 61 35)(10 62 36)(11 63 37)(12 64 38)(13 57 39)(14 58 40)(15 59 33)(16 60 34)(17 27 41)(18 28 42)(19 29 43)(20 30 44)(21 31 45)(22 32 46)(23 25 47)(24 26 48)
(1 32 61)(2 25 62)(3 26 63)(4 27 64)(5 28 57)(6 29 58)(7 30 59)(8 31 60)(9 67 22)(10 68 23)(11 69 24)(12 70 17)(13 71 18)(14 72 19)(15 65 20)(16 66 21)(33 56 44)(34 49 45)(35 50 46)(36 51 47)(37 52 48)(38 53 41)(39 54 42)(40 55 43)
(1 67 35)(2 68 36)(3 69 37)(4 70 38)(5 71 39)(6 72 40)(7 65 33)(8 66 34)(9 46 61)(10 47 62)(11 48 63)(12 41 64)(13 42 57)(14 43 58)(15 44 59)(16 45 60)(17 53 27)(18 54 28)(19 55 29)(20 56 30)(21 49 31)(22 50 32)(23 51 25)(24 52 26)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(49,53)(51,55)(58,62)(60,64)(66,70)(68,72), (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,65)(8,49,66)(9,61,35)(10,62,36)(11,63,37)(12,64,38)(13,57,39)(14,58,40)(15,59,33)(16,60,34)(17,27,41)(18,28,42)(19,29,43)(20,30,44)(21,31,45)(22,32,46)(23,25,47)(24,26,48), (1,32,61)(2,25,62)(3,26,63)(4,27,64)(5,28,57)(6,29,58)(7,30,59)(8,31,60)(9,67,22)(10,68,23)(11,69,24)(12,70,17)(13,71,18)(14,72,19)(15,65,20)(16,66,21)(33,56,44)(34,49,45)(35,50,46)(36,51,47)(37,52,48)(38,53,41)(39,54,42)(40,55,43), (1,67,35)(2,68,36)(3,69,37)(4,70,38)(5,71,39)(6,72,40)(7,65,33)(8,66,34)(9,46,61)(10,47,62)(11,48,63)(12,41,64)(13,42,57)(14,43,58)(15,44,59)(16,45,60)(17,53,27)(18,54,28)(19,55,29)(20,56,30)(21,49,31)(22,50,32)(23,51,25)(24,52,26)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(49,53)(51,55)(58,62)(60,64)(66,70)(68,72), (1,50,67)(2,51,68)(3,52,69)(4,53,70)(5,54,71)(6,55,72)(7,56,65)(8,49,66)(9,61,35)(10,62,36)(11,63,37)(12,64,38)(13,57,39)(14,58,40)(15,59,33)(16,60,34)(17,27,41)(18,28,42)(19,29,43)(20,30,44)(21,31,45)(22,32,46)(23,25,47)(24,26,48), (1,32,61)(2,25,62)(3,26,63)(4,27,64)(5,28,57)(6,29,58)(7,30,59)(8,31,60)(9,67,22)(10,68,23)(11,69,24)(12,70,17)(13,71,18)(14,72,19)(15,65,20)(16,66,21)(33,56,44)(34,49,45)(35,50,46)(36,51,47)(37,52,48)(38,53,41)(39,54,42)(40,55,43), (1,67,35)(2,68,36)(3,69,37)(4,70,38)(5,71,39)(6,72,40)(7,65,33)(8,66,34)(9,46,61)(10,47,62)(11,48,63)(12,41,64)(13,42,57)(14,43,58)(15,44,59)(16,45,60)(17,53,27)(18,54,28)(19,55,29)(20,56,30)(21,49,31)(22,50,32)(23,51,25)(24,52,26) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40),(41,45),(43,47),(49,53),(51,55),(58,62),(60,64),(66,70),(68,72)], [(1,50,67),(2,51,68),(3,52,69),(4,53,70),(5,54,71),(6,55,72),(7,56,65),(8,49,66),(9,61,35),(10,62,36),(11,63,37),(12,64,38),(13,57,39),(14,58,40),(15,59,33),(16,60,34),(17,27,41),(18,28,42),(19,29,43),(20,30,44),(21,31,45),(22,32,46),(23,25,47),(24,26,48)], [(1,32,61),(2,25,62),(3,26,63),(4,27,64),(5,28,57),(6,29,58),(7,30,59),(8,31,60),(9,67,22),(10,68,23),(11,69,24),(12,70,17),(13,71,18),(14,72,19),(15,65,20),(16,66,21),(33,56,44),(34,49,45),(35,50,46),(36,51,47),(37,52,48),(38,53,41),(39,54,42),(40,55,43)], [(1,67,35),(2,68,36),(3,69,37),(4,70,38),(5,71,39),(6,72,40),(7,65,33),(8,66,34),(9,46,61),(10,47,62),(11,48,63),(12,41,64),(13,42,57),(14,43,58),(15,44,59),(16,45,60),(17,53,27),(18,54,28),(19,55,29),(20,56,30),(21,49,31),(22,50,32),(23,51,25),(24,52,26)]])

110 conjugacy classes

class 1 2A2B3A3B3C···3J4A4B4C6A6B6C6D6E···6L6M···6T8A8B8C8D12A12B12C12D12E12F12G···12V12W···12AD24A···24H24I···24AN
order122333···344466666···66···6888812121212121212···1212···1224···2424···24
size112113···311211223···36···622221111223···36···62···26···6

110 irreducible representations

dim111111111122333336
type+++
imageC1C2C2C3C4C4C6C6C12C12M4(2)C3xM4(2)He3C2xHe3C2xHe3C4xHe3C4xHe3M4(2)xHe3
kernelM4(2)xHe3C8xHe3C2xC4xHe3C32xM4(2)C4xHe3C22xHe3C3xC24C6xC12C3xC12C62He3C32M4(2)C8C2xC4C4C22C1
# reps1218221681616216242444

Matrix representation of M4(2)xHe3 in GL5(F73)

1854000
3055000
007200
000720
000072
,
10000
4872000
00100
00010
00001
,
10000
01000
00800
00001
0040965
,
10000
01000
006400
000640
000064
,
80000
08000
00641618
0040965
00080

G:=sub<GL(5,GF(73))| [18,30,0,0,0,54,55,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[1,48,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,8,0,40,0,0,0,0,9,0,0,0,1,65],[1,0,0,0,0,0,1,0,0,0,0,0,64,0,0,0,0,0,64,0,0,0,0,0,64],[8,0,0,0,0,0,8,0,0,0,0,0,64,40,0,0,0,16,9,8,0,0,18,65,0] >;

M4(2)xHe3 in GAP, Magma, Sage, TeX

M_4(2)\times {\rm He}_3
% in TeX

G:=Group("M4(2)xHe3");
// GroupNames label

G:=SmallGroup(432,213);
// by ID

G=gap.SmallGroup(432,213);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-3,-2,252,3053,605,242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^3=d^3=e^3=1,b*a*b=a^5,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<