extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC24).1C6 = He3:4Q16 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 144 | 6- | (C3xC24).1C6 | 432,114 |
(C3xC24).2C6 = D8x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).2C6 | 432,217 |
(C3xC24).3C6 = Q16xHe3 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).3C6 | 432,222 |
(C3xC24).4C6 = Q16x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).4C6 | 432,223 |
(C3xC24).5C6 = He3:3C16 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).5C6 | 432,30 |
(C3xC24).6C6 = SD16x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).6C6 | 432,220 |
(C3xC24).7C6 = M4(2)x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).7C6 | 432,214 |
(C3xC24).8C6 = C16xHe3 | φ: C6/C2 → C3 ⊆ Aut C3xC24 | 144 | 3 | (C3xC24).8C6 | 432,35 |
(C3xC24).9C6 = C16x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3xC24 | 144 | 3 | (C3xC24).9C6 | 432,36 |
(C3xC24).10C6 = C2xC8x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3xC24 | 144 | | (C3xC24).10C6 | 432,211 |
(C3xC24).11C6 = C3xC32:5Q16 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).11C6 | 432,484 |
(C3xC24).12C6 = C9xD24 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).12C6 | 432,112 |
(C3xC24).13C6 = C9xDic12 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).13C6 | 432,113 |
(C3xC24).14C6 = C32xDic12 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).14C6 | 432,468 |
(C3xC24).15C6 = C9xC24:C2 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).15C6 | 432,111 |
(C3xC24).16C6 = D8xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).16C6 | 432,215 |
(C3xC24).17C6 = Q16xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).17C6 | 432,221 |
(C3xC24).18C6 = Q16xC33 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).18C6 | 432,519 |
(C3xC24).19C6 = C9xC3:C16 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).19C6 | 432,29 |
(C3xC24).20C6 = S3xC72 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).20C6 | 432,109 |
(C3xC24).21C6 = C32xC3:C16 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).21C6 | 432,229 |
(C3xC24).22C6 = C3xC24.S3 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).22C6 | 432,230 |
(C3xC24).23C6 = C9xC8:S3 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).23C6 | 432,110 |
(C3xC24).24C6 = SD16xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).24C6 | 432,218 |
(C3xC24).25C6 = M4(2)xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).25C6 | 432,212 |