Extensions 1→N→G→Q→1 with N=C3xC24 and Q=C6

Direct product G=NxQ with N=C3xC24 and Q=C6
dρLabelID
C3xC6xC24432C3xC6xC24432,515

Semidirect products G=N:Q with N=C3xC24 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3xC24):1C6 = He3:4D8φ: C6/C1C6 ⊆ Aut C3xC24726+(C3xC24):1C6432,118
(C3xC24):2C6 = He3:6SD16φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):2C6432,117
(C3xC24):3C6 = D8xHe3φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):3C6432,216
(C3xC24):4C6 = C8xC32:C6φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):4C6432,115
(C3xC24):5C6 = He3:5M4(2)φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):5C6432,116
(C3xC24):6C6 = SD16xHe3φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):6C6432,219
(C3xC24):7C6 = M4(2)xHe3φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24):7C6432,213
(C3xC24):8C6 = C2xC8xHe3φ: C6/C2C3 ⊆ Aut C3xC24144(C3xC24):8C6432,210
(C3xC24):9C6 = C3xC32:5D8φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):9C6432,483
(C3xC24):10C6 = C32xD24φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):10C6432,467
(C3xC24):11C6 = C3xC24:2S3φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):11C6432,482
(C3xC24):12C6 = C32xC24:C2φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):12C6432,466
(C3xC24):13C6 = D8xC33φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24):13C6432,517
(C3xC24):14C6 = S3xC3xC24φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):14C6432,464
(C3xC24):15C6 = C3:S3xC24φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):15C6432,480
(C3xC24):16C6 = C3xC24:S3φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):16C6432,481
(C3xC24):17C6 = C32xC8:S3φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24):17C6432,465
(C3xC24):18C6 = SD16xC33φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24):18C6432,518
(C3xC24):19C6 = M4(2)xC33φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24):19C6432,516

Non-split extensions G=N.Q with N=C3xC24 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3xC24).1C6 = He3:4Q16φ: C6/C1C6 ⊆ Aut C3xC241446-(C3xC24).1C6432,114
(C3xC24).2C6 = D8x3- 1+2φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24).2C6432,217
(C3xC24).3C6 = Q16xHe3φ: C6/C1C6 ⊆ Aut C3xC241446(C3xC24).3C6432,222
(C3xC24).4C6 = Q16x3- 1+2φ: C6/C1C6 ⊆ Aut C3xC241446(C3xC24).4C6432,223
(C3xC24).5C6 = He3:3C16φ: C6/C1C6 ⊆ Aut C3xC241446(C3xC24).5C6432,30
(C3xC24).6C6 = SD16x3- 1+2φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24).6C6432,220
(C3xC24).7C6 = M4(2)x3- 1+2φ: C6/C1C6 ⊆ Aut C3xC24726(C3xC24).7C6432,214
(C3xC24).8C6 = C16xHe3φ: C6/C2C3 ⊆ Aut C3xC241443(C3xC24).8C6432,35
(C3xC24).9C6 = C16x3- 1+2φ: C6/C2C3 ⊆ Aut C3xC241443(C3xC24).9C6432,36
(C3xC24).10C6 = C2xC8x3- 1+2φ: C6/C2C3 ⊆ Aut C3xC24144(C3xC24).10C6432,211
(C3xC24).11C6 = C3xC32:5Q16φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24).11C6432,484
(C3xC24).12C6 = C9xD24φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).12C6432,112
(C3xC24).13C6 = C9xDic12φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).13C6432,113
(C3xC24).14C6 = C32xDic12φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24).14C6432,468
(C3xC24).15C6 = C9xC24:C2φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).15C6432,111
(C3xC24).16C6 = D8xC3xC9φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24).16C6432,215
(C3xC24).17C6 = Q16xC3xC9φ: C6/C3C2 ⊆ Aut C3xC24432(C3xC24).17C6432,221
(C3xC24).18C6 = Q16xC33φ: C6/C3C2 ⊆ Aut C3xC24432(C3xC24).18C6432,519
(C3xC24).19C6 = C9xC3:C16φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).19C6432,29
(C3xC24).20C6 = S3xC72φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).20C6432,109
(C3xC24).21C6 = C32xC3:C16φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24).21C6432,229
(C3xC24).22C6 = C3xC24.S3φ: C6/C3C2 ⊆ Aut C3xC24144(C3xC24).22C6432,230
(C3xC24).23C6 = C9xC8:S3φ: C6/C3C2 ⊆ Aut C3xC241442(C3xC24).23C6432,110
(C3xC24).24C6 = SD16xC3xC9φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24).24C6432,218
(C3xC24).25C6 = M4(2)xC3xC9φ: C6/C3C2 ⊆ Aut C3xC24216(C3xC24).25C6432,212

׿
x
:
Z
F
o
wr
Q
<