Extensions 1→N→G→Q→1 with N=C3xD6:S3 and Q=C2

Direct product G=NxQ with N=C3xD6:S3 and Q=C2
dρLabelID
C6xD6:S348C6xD6:S3432,655

Semidirect products G=N:Q with N=C3xD6:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD6:S3):1C2 = C33:D8φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3):1C2432,582
(C3xD6:S3):2C2 = S3xD6:S3φ: C2/C1C2 ⊆ Out C3xD6:S3488-(C3xD6:S3):2C2432,597
(C3xD6:S3):3C2 = D6:4S32φ: C2/C1C2 ⊆ Out C3xD6:S3248+(C3xD6:S3):3C2432,599
(C3xD6:S3):4C2 = (S3xC6):D6φ: C2/C1C2 ⊆ Out C3xD6:S3248+(C3xD6:S3):4C2432,601
(C3xD6:S3):5C2 = (S3xC6).D6φ: C2/C1C2 ⊆ Out C3xD6:S3248+(C3xD6:S3):5C2432,606
(C3xD6:S3):6C2 = D6.4S32φ: C2/C1C2 ⊆ Out C3xD6:S3488-(C3xD6:S3):6C2432,608
(C3xD6:S3):7C2 = D6:S3:S3φ: C2/C1C2 ⊆ Out C3xD6:S3488-(C3xD6:S3):7C2432,610
(C3xD6:S3):8C2 = C3xC32:D8φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3):8C2432,576
(C3xD6:S3):9C2 = C3xD12:5S3φ: C2/C1C2 ⊆ Out C3xD6:S3484(C3xD6:S3):9C2432,643
(C3xD6:S3):10C2 = C3xD6:D6φ: C2/C1C2 ⊆ Out C3xD6:S3484(C3xD6:S3):10C2432,650
(C3xD6:S3):11C2 = C3xD6.4D6φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3):11C2432,653
(C3xD6:S3):12C2 = C3xS3xC3:D4φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3):12C2432,658
(C3xD6:S3):13C2 = C3xD6.D6φ: trivial image484(C3xD6:S3):13C2432,646

Non-split extensions G=N.Q with N=C3xD6:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD6:S3).1C2 = C33:7SD16φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3).1C2432,584
(C3xD6:S3).2C2 = C3xC32:2SD16φ: C2/C1C2 ⊆ Out C3xD6:S3244(C3xD6:S3).2C2432,577

׿
x
:
Z
F
o
wr
Q
<