Copied to
clipboard

G = C3xD12:5S3order 432 = 24·33

Direct product of C3 and D12:5S3

direct product, metabelian, supersoluble, monomial

Aliases: C3xD12:5S3, C12.79S32, (S3xC12):2C6, (S3xC12):2S3, (C3xD12):4C6, D12:5(C3xS3), D6.1(S3xC6), D6:S3:2C6, (C3xD12):11S3, C12.36(S3xC6), (S3xDic3):4C6, (S3xC6).36D6, C33:8(C4oD4), (C3xC12).135D6, (C32xD12):6C2, Dic3.8(S3xC6), C32:4Q8:11C6, (C3xDic3).49D6, C32:22(C4oD12), (C32xC6).21C23, C32:21(D4:2S3), (C32xC12).36C22, (C32xDic3).26C22, C2.5(S32xC6), C4.6(C3xS32), C6.2(S3xC2xC6), (S3xC3xC12):2C2, (C4xS3):1(C3xS3), C6.105(C2xS32), C3:3(C3xC4oD12), C3:2(C3xD4:2S3), (S3xC6).1(C2xC6), (C3xS3xDic3):11C2, C32:4(C3xC4oD4), (C3xD6:S3):9C2, (C3xC12).51(C2xC6), (S3xC3xC6).10C22, C3:Dic3.9(C2xC6), (C3xC32:4Q8):7C2, (C3xC6).12(C22xC6), (C3xDic3).8(C2xC6), (C3xC6).126(C22xS3), (C3xC3:Dic3).35C22, SmallGroup(432,643)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xD12:5S3
C1C3C32C3xC6C32xC6S3xC3xC6C3xS3xDic3 — C3xD12:5S3
C32C3xC6 — C3xD12:5S3
C1C6C12

Generators and relations for C3xD12:5S3
 G = < a,b,c,d,e | a3=b12=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 664 in 210 conjugacy classes, 64 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C32, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C4oD4, C3xS3, C3xC6, C3xC6, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C3xQ8, C33, C3xDic3, C3xDic3, C3:Dic3, C3xC12, C3xC12, S3xC6, S3xC6, S3xC6, C62, C4oD12, D4:2S3, C3xC4oD4, S3xC32, C32xC6, S3xDic3, D6:S3, C3xDic6, S3xC12, S3xC12, C3xD12, C3xD12, C6xDic3, C3xC3:D4, C32:4Q8, C6xC12, D4xC32, C32xDic3, C3xC3:Dic3, C32xC12, S3xC3xC6, S3xC3xC6, D12:5S3, C3xC4oD12, C3xD4:2S3, C3xS3xDic3, C3xD6:S3, S3xC3xC12, C32xD12, C3xC32:4Q8, C3xD12:5S3
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S32, S3xC6, C4oD12, D4:2S3, C3xC4oD4, C2xS32, S3xC2xC6, C3xS32, D12:5S3, C3xC4oD12, C3xD4:2S3, S32xC6, C3xD12:5S3

Smallest permutation representation of C3xD12:5S3
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 40)(14 39)(15 38)(16 37)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,40),(14,39),(15,38),(16,37),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41)]])

81 conjugacy classes

class 1 2A2B2C2D3A3B3C···3H3I3J3K4A4B4C4D4E6A6B6C···6H6I6J6K6L···6W6X···6AC12A···12H12I12J12K12L12M···12U12V···12AA12AB12AC12AD12AE
order12222333···333344444666···66666···66···612···121212121212···1212···1212121212
size11666112···24442331818112···24446···612···122···233334···46···618181818

81 irreducible representations

dim1111111111112222222222222244444444
type++++++++++++-+-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3S3D6D6D6C4oD4C3xS3C3xS3S3xC6S3xC6S3xC6C4oD12C3xC4oD4C3xC4oD12S32D4:2S3C2xS32C3xS32D12:5S3C3xD4:2S3S32xC6C3xD12:5S3
kernelC3xD12:5S3C3xS3xDic3C3xD6:S3S3xC3xC12C32xD12C3xC32:4Q8D12:5S3S3xDic3D6:S3S3xC12C3xD12C32:4Q8S3xC12C3xD12C3xDic3C3xC12S3xC6C33C4xS3D12Dic3C12D6C32C32C3C12C32C6C4C3C3C2C1
# reps1221112442221112322224644811122224

Matrix representation of C3xD12:5S3 in GL6(F13)

300000
030000
009000
000900
000010
000001
,
800000
050000
0011200
001000
000010
000001
,
050000
800000
000100
001000
000010
000001
,
100000
010000
001000
000100
000001
00001212
,
1200000
010000
001000
000100
000010
00001212

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

C3xD12:5S3 in GAP, Magma, Sage, TeX

C_3\times D_{12}\rtimes_5S_3
% in TeX

G:=Group("C3xD12:5S3");
// GroupNames label

G:=SmallGroup(432,643);
// by ID

G=gap.SmallGroup(432,643);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,142,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<