Extensions 1→N→G→Q→1 with N=C9 and Q=C3xSD16

Direct product G=NxQ with N=C9 and Q=C3xSD16
dρLabelID
SD16xC3xC9216SD16xC3xC9432,218

Semidirect products G=N:Q with N=C9 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C9:1(C3xSD16) = C72:2C6φ: C3xSD16/C8C6 ⊆ Aut C9726C9:1(C3xSD16)432,122
C9:2(C3xSD16) = Dic18:C6φ: C3xSD16/D4C6 ⊆ Aut C97212-C9:2(C3xSD16)432,154
C9:3(C3xSD16) = D36.C6φ: C3xSD16/Q8C6 ⊆ Aut C97212+C9:3(C3xSD16)432,163
C9:4(C3xSD16) = SD16x3- 1+2φ: C3xSD16/SD16C3 ⊆ Aut C9726C9:4(C3xSD16)432,220
C9:5(C3xSD16) = C3xC72:C2φ: C3xSD16/C24C2 ⊆ Aut C91442C9:5(C3xSD16)432,107
C9:6(C3xSD16) = C3xD4.D9φ: C3xSD16/C3xD4C2 ⊆ Aut C9724C9:6(C3xSD16)432,148
C9:7(C3xSD16) = C3xQ8:2D9φ: C3xSD16/C3xQ8C2 ⊆ Aut C91444C9:7(C3xSD16)432,157

Non-split extensions G=N.Q with N=C9 and Q=C3xSD16
extensionφ:Q→Aut NdρLabelID
C9.(C3xSD16) = SD16xC27central extension (φ=1)2162C9.(C3xSD16)432,26

׿
x
:
Z
F
o
wr
Q
<