Copied to
clipboard

G = C72:2C6order 432 = 24·33

2nd semidirect product of C72 and C6 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C72:2C6, D36.2C6, Dic18:4C6, 3- 1+2:1SD16, C72:C2:C3, C8:2(C9:C6), C36.9(C2xC6), (C3xC24).5S3, C9:1(C3xSD16), C18.2(C3xD4), C6.8(C3xD12), C12.71(S3xC6), C24.10(C3xS3), D36:C3.2C2, (C3xC6).17D12, (C3xC12).44D6, C36.C6:4C2, C2.4(D36:C3), C32.(C24:C2), (C8x3- 1+2):2C2, (C2x3- 1+2).2D4, (C4x3- 1+2).9C22, C4.9(C2xC9:C6), C3.3(C3xC24:C2), SmallGroup(432,122)

Series: Derived Chief Lower central Upper central

C1C36 — C72:2C6
C1C3C9C18C36C4x3- 1+2D36:C3 — C72:2C6
C9C18C36 — C72:2C6
C1C2C4C8

Generators and relations for C72:2C6
 G = < a,b | a72=b6=1, bab-1=a11 >

Subgroups: 326 in 64 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2xC6, SD16, D9, C18, C18, C3xS3, C3xC6, C24, C24, Dic6, D12, C3xD4, C3xQ8, 3- 1+2, Dic9, C36, C36, D18, C3xDic3, C3xC12, S3xC6, C24:C2, C3xSD16, C9:C6, C2x3- 1+2, C72, C72, Dic18, D36, C3xC24, C3xDic6, C3xD12, C9:C12, C4x3- 1+2, C2xC9:C6, C72:C2, C3xC24:C2, C8x3- 1+2, C36.C6, D36:C3, C72:2C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, SD16, C3xS3, D12, C3xD4, S3xC6, C24:C2, C3xSD16, C9:C6, C3xD12, C2xC9:C6, C3xC24:C2, D36:C3, C72:2C6

Smallest permutation representation of C72:2C6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 60 26 36 50 12)(3 47 51 71 27 23)(4 34)(5 21 29 69 53 45)(6 8 54 32 30 56)(7 67)(9 41 57 65 33 17)(10 28)(11 15 35 63 59 39)(13 61)(14 48 38 24 62 72)(16 22)(18 68 66 20 42 44)(19 55)(25 49)(31 43)(40 70)(46 64)(52 58)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,60,26,36,50,12)(3,47,51,71,27,23)(4,34)(5,21,29,69,53,45)(6,8,54,32,30,56)(7,67)(9,41,57,65,33,17)(10,28)(11,15,35,63,59,39)(13,61)(14,48,38,24,62,72)(16,22)(18,68,66,20,42,44)(19,55)(25,49)(31,43)(40,70)(46,64)(52,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,60,26,36,50,12)(3,47,51,71,27,23)(4,34)(5,21,29,69,53,45)(6,8,54,32,30,56)(7,67)(9,41,57,65,33,17)(10,28)(11,15,35,63,59,39)(13,61)(14,48,38,24,62,72)(16,22)(18,68,66,20,42,44)(19,55)(25,49)(31,43)(40,70)(46,64)(52,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,60,26,36,50,12),(3,47,51,71,27,23),(4,34),(5,21,29,69,53,45),(6,8,54,32,30,56),(7,67),(9,41,57,65,33,17),(10,28),(11,15,35,63,59,39),(13,61),(14,48,38,24,62,72),(16,22),(18,68,66,20,42,44),(19,55),(25,49),(31,43),(40,70),(46,64),(52,58)]])

53 conjugacy classes

class 1 2A2B3A3B3C4A4B6A6B6C6D6E8A8B9A9B9C12A12B12C12D12E12F18A18B18C24A24B24C24D24E24F24G24H36A···36F72A···72L
order122333446666688999121212121212181818242424242424242436···3672···72
size113623323623336362266622663636666222266666···66···6

53 irreducible representations

dim111111112222222222226666
type+++++++++++
imageC1C2C2C2C3C6C6C6S3D4D6SD16C3xS3C3xD4D12S3xC6C3xSD16C24:C2C3xD12C3xC24:C2C9:C6C2xC9:C6D36:C3C72:2C6
kernelC72:2C6C8x3- 1+2C36.C6D36:C3C72:C2C72Dic18D36C3xC24C2x3- 1+2C3xC123- 1+2C24C18C3xC6C12C9C32C6C3C8C4C2C1
# reps111122221112222244481124

Matrix representation of C72:2C6 in GL8(F73)

1125000000
4836000000
000000714
0000005966
007660000
007140000
000076600
000071400
,
09000000
90000000
00100000
0072720000
00000010
0000007272
0000727200
00000100

G:=sub<GL(8,GF(73))| [11,48,0,0,0,0,0,0,25,36,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,66,14,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,66,14,0,0,7,59,0,0,0,0,0,0,14,66,0,0,0,0],[0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0] >;

C72:2C6 in GAP, Magma, Sage, TeX

C_{72}\rtimes_2C_6
% in TeX

G:=Group("C72:2C6");
// GroupNames label

G:=SmallGroup(432,122);
// by ID

G=gap.SmallGroup(432,122);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,92,1011,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^72=b^6=1,b*a*b^-1=a^11>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<