Extensions 1→N→G→Q→1 with N=S3xC12 and Q=C6

Direct product G=NxQ with N=S3xC12 and Q=C6
dρLabelID
S3xC6xC12144S3xC6xC12432,701

Semidirect products G=N:Q with N=S3xC12 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3xC12):1C6 = C3xD6.D6φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12):1C6432,646
(S3xC12):2C6 = C3xD12:5S3φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12):2C6432,643
(S3xC12):3C6 = C3xD6.6D6φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12):3C6432,647
(S3xC12):4C6 = C3xS3xD12φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12):4C6432,649
(S3xC12):5C6 = S3xD4xC32φ: C6/C3C2 ⊆ Out S3xC1272(S3xC12):5C6432,704
(S3xC12):6C6 = C32xD4:2S3φ: C6/C3C2 ⊆ Out S3xC1272(S3xC12):6C6432,705
(S3xC12):7C6 = C32xQ8:3S3φ: C6/C3C2 ⊆ Out S3xC12144(S3xC12):7C6432,707
(S3xC12):8C6 = S32xC12φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12):8C6432,648
(S3xC12):9C6 = C32xC4oD12φ: C6/C3C2 ⊆ Out S3xC1272(S3xC12):9C6432,703

Non-split extensions G=N.Q with N=S3xC12 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3xC12).1C6 = C3xD6.Dic3φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12).1C6432,416
(S3xC12).2C6 = S3xD4xC9φ: C6/C3C2 ⊆ Out S3xC12724(S3xC12).2C6432,358
(S3xC12).3C6 = C9xD4:2S3φ: C6/C3C2 ⊆ Out S3xC12724(S3xC12).3C6432,359
(S3xC12).4C6 = S3xQ8xC9φ: C6/C3C2 ⊆ Out S3xC121444(S3xC12).4C6432,366
(S3xC12).5C6 = C9xQ8:3S3φ: C6/C3C2 ⊆ Out S3xC121444(S3xC12).5C6432,367
(S3xC12).6C6 = C3xS3xDic6φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12).6C6432,642
(S3xC12).7C6 = S3xQ8xC32φ: C6/C3C2 ⊆ Out S3xC12144(S3xC12).7C6432,706
(S3xC12).8C6 = C3xS3xC3:C8φ: C6/C3C2 ⊆ Out S3xC12484(S3xC12).8C6432,414
(S3xC12).9C6 = C9xC8:S3φ: C6/C3C2 ⊆ Out S3xC121442(S3xC12).9C6432,110
(S3xC12).10C6 = C9xC4oD12φ: C6/C3C2 ⊆ Out S3xC12722(S3xC12).10C6432,347
(S3xC12).11C6 = C32xC8:S3φ: C6/C3C2 ⊆ Out S3xC12144(S3xC12).11C6432,465
(S3xC12).12C6 = S3xC72φ: trivial image1442(S3xC12).12C6432,109
(S3xC12).13C6 = S3xC2xC36φ: trivial image144(S3xC12).13C6432,345
(S3xC12).14C6 = S3xC3xC24φ: trivial image144(S3xC12).14C6432,464

׿
x
:
Z
F
o
wr
Q
<