Extensions 1→N→G→Q→1 with N=C4xHe3:C2 and Q=C2

Direct product G=NxQ with N=C4xHe3:C2 and Q=C2
dρLabelID
C2xC4xHe3:C272C2xC4xHe3:C2432,385

Semidirect products G=N:Q with N=C4xHe3:C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xHe3:C2):1C2 = C12.91S32φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2):1C2432,297
(C4xHe3:C2):2C2 = C12.84S32φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2):2C2432,296
(C4xHe3:C2):3C2 = C12.86S32φ: C2/C1C2 ⊆ Out C4xHe3:C2366+(C4xHe3:C2):3C2432,302
(C4xHe3:C2):4C2 = D4xHe3:C2φ: C2/C1C2 ⊆ Out C4xHe3:C2366(C4xHe3:C2):4C2432,390
(C4xHe3:C2):5C2 = C62.16D6φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2):5C2432,391
(C4xHe3:C2):6C2 = He3:5D4:C2φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2):6C2432,395
(C4xHe3:C2):7C2 = C4xC32:D6φ: C2/C1C2 ⊆ Out C4xHe3:C2366(C4xHe3:C2):7C2432,300
(C4xHe3:C2):8C2 = C62.47D6φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2):8C2432,387

Non-split extensions G=N.Q with N=C4xHe3:C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xHe3:C2).1C2 = He3:3M4(2)φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).1C2432,82
(C4xHe3:C2).2C2 = C12.85S32φ: C2/C1C2 ⊆ Out C4xHe3:C2726-(C4xHe3:C2).2C2432,298
(C4xHe3:C2).3C2 = Q8xHe3:C2φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).3C2432,394
(C4xHe3:C2).4C2 = C12.89S32φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).4C2432,81
(C4xHe3:C2).5C2 = He3:2(C2xC8)φ: C2/C1C2 ⊆ Out C4xHe3:C2723(C4xHe3:C2).5C2432,273
(C4xHe3:C2).6C2 = C4xHe3:C4φ: C2/C1C2 ⊆ Out C4xHe3:C2723(C4xHe3:C2).6C2432,275
(C4xHe3:C2).7C2 = He3:6M4(2)φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).7C2432,174
(C4xHe3:C2).8C2 = He3:1M4(2)φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).8C2432,274
(C4xHe3:C2).9C2 = C4:(He3:C4)φ: C2/C1C2 ⊆ Out C4xHe3:C2726(C4xHe3:C2).9C2432,276
(C4xHe3:C2).10C2 = C8xHe3:C2φ: trivial image723(C4xHe3:C2).10C2432,173

׿
x
:
Z
F
o
wr
Q
<