Copied to
clipboard

G = D4xHe3:C2order 432 = 24·33

Direct product of D4 and He3:C2

direct product, non-abelian, supersoluble, monomial

Aliases: D4xHe3:C2, C62:4D6, (C3xC12):4D6, (D4xHe3):5C2, He3:11(C2xD4), C32:7(S3xD4), He3:7D4:3C2, He3:5D4:5C2, (D4xC32):5S3, (C4xHe3):4C22, He3:3C4:6C22, (C2xHe3).33C23, (C22xHe3):4C22, C3.2(D4xC3:S3), C12.48(C2xC3:S3), C4:1(C2xHe3:C2), (C3xD4).9(C3:S3), (C4xHe3:C2):4C2, C6.65(C22xC3:S3), (C3xC6).43(C22xS3), C22:2(C2xHe3:C2), (C22xHe3:C2):4C2, (C2xHe3:C2):6C22, C2.6(C22xHe3:C2), (C2xC6).9(C2xC3:S3), SmallGroup(432,390)

Series: Derived Chief Lower central Upper central

C1C3C2xHe3 — D4xHe3:C2
C1C3C32He3C2xHe3C2xHe3:C2C22xHe3:C2 — D4xHe3:C2
He3C2xHe3 — D4xHe3:C2
C1C6C3xD4

Generators and relations for D4xHe3:C2
 G = < a,b,c,d,e,f | a4=b2=c3=d3=e3=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf=c-1, de=ed, df=fd, fef=e-1 >

Subgroups: 1265 in 297 conjugacy classes, 55 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, D4, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xC6, C3xC6, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xD4, C22xS3, C22xC6, He3, C3xDic3, C3xC12, S3xC6, C62, S3xD4, C6xD4, He3:C2, He3:C2, C2xHe3, C2xHe3, S3xC12, C3xD12, C3xC3:D4, D4xC32, S3xC2xC6, He3:3C4, C4xHe3, C2xHe3:C2, C2xHe3:C2, C2xHe3:C2, C22xHe3, C3xS3xD4, C4xHe3:C2, He3:5D4, He3:7D4, D4xHe3, C22xHe3:C2, D4xHe3:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:S3, C22xS3, C2xC3:S3, S3xD4, He3:C2, C22xC3:S3, C2xHe3:C2, D4xC3:S3, C22xHe3:C2, D4xHe3:C2

Smallest permutation representation of D4xHe3:C2
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(2 4)(6 8)(10 12)(13 15)(17 19)(22 24)(26 28)(30 32)(34 36)
(1 7 35)(2 8 36)(3 5 33)(4 6 34)(9 29 16)(10 30 13)(11 31 14)(12 32 15)(17 26 22)(18 27 23)(19 28 24)(20 25 21)
(1 21 31)(2 22 32)(3 23 29)(4 24 30)(5 18 16)(6 19 13)(7 20 14)(8 17 15)(9 33 27)(10 34 28)(11 35 25)(12 36 26)
(1 25 20)(2 26 17)(3 27 18)(4 28 19)(5 29 33)(6 30 34)(7 31 35)(8 32 36)(9 16 23)(10 13 24)(11 14 21)(12 15 22)
(1 3)(2 4)(5 35)(6 36)(7 33)(8 34)(9 14)(10 15)(11 16)(12 13)(17 28)(18 25)(19 26)(20 27)(21 23)(22 24)(29 31)(30 32)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(6,8)(10,12)(13,15)(17,19)(22,24)(26,28)(30,32)(34,36), (1,7,35)(2,8,36)(3,5,33)(4,6,34)(9,29,16)(10,30,13)(11,31,14)(12,32,15)(17,26,22)(18,27,23)(19,28,24)(20,25,21), (1,21,31)(2,22,32)(3,23,29)(4,24,30)(5,18,16)(6,19,13)(7,20,14)(8,17,15)(9,33,27)(10,34,28)(11,35,25)(12,36,26), (1,25,20)(2,26,17)(3,27,18)(4,28,19)(5,29,33)(6,30,34)(7,31,35)(8,32,36)(9,16,23)(10,13,24)(11,14,21)(12,15,22), (1,3)(2,4)(5,35)(6,36)(7,33)(8,34)(9,14)(10,15)(11,16)(12,13)(17,28)(18,25)(19,26)(20,27)(21,23)(22,24)(29,31)(30,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(6,8)(10,12)(13,15)(17,19)(22,24)(26,28)(30,32)(34,36), (1,7,35)(2,8,36)(3,5,33)(4,6,34)(9,29,16)(10,30,13)(11,31,14)(12,32,15)(17,26,22)(18,27,23)(19,28,24)(20,25,21), (1,21,31)(2,22,32)(3,23,29)(4,24,30)(5,18,16)(6,19,13)(7,20,14)(8,17,15)(9,33,27)(10,34,28)(11,35,25)(12,36,26), (1,25,20)(2,26,17)(3,27,18)(4,28,19)(5,29,33)(6,30,34)(7,31,35)(8,32,36)(9,16,23)(10,13,24)(11,14,21)(12,15,22), (1,3)(2,4)(5,35)(6,36)(7,33)(8,34)(9,14)(10,15)(11,16)(12,13)(17,28)(18,25)(19,26)(20,27)(21,23)(22,24)(29,31)(30,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(2,4),(6,8),(10,12),(13,15),(17,19),(22,24),(26,28),(30,32),(34,36)], [(1,7,35),(2,8,36),(3,5,33),(4,6,34),(9,29,16),(10,30,13),(11,31,14),(12,32,15),(17,26,22),(18,27,23),(19,28,24),(20,25,21)], [(1,21,31),(2,22,32),(3,23,29),(4,24,30),(5,18,16),(6,19,13),(7,20,14),(8,17,15),(9,33,27),(10,34,28),(11,35,25),(12,36,26)], [(1,25,20),(2,26,17),(3,27,18),(4,28,19),(5,29,33),(6,30,34),(7,31,35),(8,32,36),(9,16,23),(10,13,24),(11,14,21),(12,15,22)], [(1,3),(2,4),(5,35),(6,36),(7,33),(8,34),(9,14),(10,15),(11,16),(12,13),(17,28),(18,25),(19,26),(20,27),(21,23),(22,24),(29,31),(30,32)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O···6V6W6X6Y6Z12A12B12C12D12E12F12G12H
order1222222233333344666666666666666···666661212121212121212
size11229918181166662181122226666999912···121818181822121212121818

50 irreducible representations

dim111111222233346
type+++++++++++
imageC1C2C2C2C2C2S3D4D6D6He3:C2C2xHe3:C2C2xHe3:C2S3xD4D4xHe3:C2
kernelD4xHe3:C2C4xHe3:C2He3:5D4He3:7D4D4xHe3C22xHe3:C2D4xC32He3:C2C3xC12C62D4C4C22C32C1
# reps111212424844844

Matrix representation of D4xHe3:C2 in GL5(F13)

110000
512000
001200
000120
000012
,
10000
512000
00100
00010
00001
,
10000
01000
00010
00001
00100
,
10000
01000
00300
00030
00003
,
10000
01000
00009
00300
00010
,
120000
012000
00100
00001
00010

G:=sub<GL(5,GF(13))| [1,5,0,0,0,10,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,5,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[1,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,9,0,0],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

D4xHe3:C2 in GAP, Magma, Sage, TeX

D_4\times {\rm He}_3\rtimes C_2
% in TeX

G:=Group("D4xHe3:C2");
// GroupNames label

G:=SmallGroup(432,390);
// by ID

G=gap.SmallGroup(432,390);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,135,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=c^3=d^3=e^3=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<