Copied to
clipboard

G = D28.15D4order 448 = 26·7

15th non-split extension by D28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.15D4, C42.86D14, Dic14.15D4, C4:Q8:8D7, C4.58(D4xD7), C28.41(C2xD4), (C2xC28).12D4, (C2xQ8).49D14, Dic14:C4:14C2, C14.54C22wrC2, C28.10D4:6C2, C28.C23:3C2, C7:3(D4.10D4), (C4xC28).142C22, (C2xC28).413C23, C4oD28.22C22, (Q8xC14).67C22, C2.22(C23:D14), Q8.10D14.2C2, C4.Dic7.15C22, (C7xC4:Q8):8C2, (C2xC14).544(C2xD4), (C2xC4).11(C7:D4), C22.34(C2xC7:D4), (C2xC4).119(C22xD7), SmallGroup(448,629)

Series: Derived Chief Lower central Upper central

C1C2xC28 — D28.15D4
C1C7C14C28C2xC28C4oD28Q8.10D14 — D28.15D4
C7C14C2xC28 — D28.15D4
C1C2C2xC4C4:Q8

Generators and relations for D28.15D4
 G = < a,b,c,d | a28=b2=d2=1, c4=a14, bab=cac-1=a-1, dad=a13, cbc-1=a19b, dbd=a26b, dcd=c3 >

Subgroups: 716 in 142 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, C2xC4, D4, Q8, D7, C14, C14, C42, C4:C4, M4(2), SD16, Q16, C2xQ8, C2xQ8, C4oD4, Dic7, C28, C28, D14, C2xC14, C4.10D4, C4wrC2, C4:Q8, C8.C22, 2- 1+4, C7:C8, Dic14, Dic14, C4xD7, D28, D28, C7:D4, C2xC28, C2xC28, C2xC28, C7xQ8, D4.10D4, C4.Dic7, Q8:D7, C7:Q16, C4xC28, C7xC4:C4, C4oD28, C4oD28, Q8xD7, Q8:2D7, Q8xC14, Dic14:C4, C28.10D4, C28.C23, C7xC4:Q8, Q8.10D14, D28.15D4
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C22wrC2, C7:D4, C22xD7, D4.10D4, D4xD7, C2xC7:D4, C23:D14, D28.15D4

Smallest permutation representation of D28.15D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 103)(2 102)(3 101)(4 100)(5 99)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 89)(16 88)(17 87)(18 86)(19 85)(20 112)(21 111)(22 110)(23 109)(24 108)(25 107)(26 106)(27 105)(28 104)(29 70)(30 69)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 62)(38 61)(39 60)(40 59)(41 58)(42 57)(43 84)(44 83)(45 82)(46 81)(47 80)(48 79)(49 78)(50 77)(51 76)(52 75)(53 74)(54 73)(55 72)(56 71)
(1 104 8 97 15 90 22 111)(2 103 9 96 16 89 23 110)(3 102 10 95 17 88 24 109)(4 101 11 94 18 87 25 108)(5 100 12 93 19 86 26 107)(6 99 13 92 20 85 27 106)(7 98 14 91 21 112 28 105)(29 71 36 64 43 57 50 78)(30 70 37 63 44 84 51 77)(31 69 38 62 45 83 52 76)(32 68 39 61 46 82 53 75)(33 67 40 60 47 81 54 74)(34 66 41 59 48 80 55 73)(35 65 42 58 49 79 56 72)
(1 66)(2 79)(3 64)(4 77)(5 62)(6 75)(7 60)(8 73)(9 58)(10 71)(11 84)(12 69)(13 82)(14 67)(15 80)(16 65)(17 78)(18 63)(19 76)(20 61)(21 74)(22 59)(23 72)(24 57)(25 70)(26 83)(27 68)(28 81)(29 109)(30 94)(31 107)(32 92)(33 105)(34 90)(35 103)(36 88)(37 101)(38 86)(39 99)(40 112)(41 97)(42 110)(43 95)(44 108)(45 93)(46 106)(47 91)(48 104)(49 89)(50 102)(51 87)(52 100)(53 85)(54 98)(55 111)(56 96)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71), (1,104,8,97,15,90,22,111)(2,103,9,96,16,89,23,110)(3,102,10,95,17,88,24,109)(4,101,11,94,18,87,25,108)(5,100,12,93,19,86,26,107)(6,99,13,92,20,85,27,106)(7,98,14,91,21,112,28,105)(29,71,36,64,43,57,50,78)(30,70,37,63,44,84,51,77)(31,69,38,62,45,83,52,76)(32,68,39,61,46,82,53,75)(33,67,40,60,47,81,54,74)(34,66,41,59,48,80,55,73)(35,65,42,58,49,79,56,72), (1,66)(2,79)(3,64)(4,77)(5,62)(6,75)(7,60)(8,73)(9,58)(10,71)(11,84)(12,69)(13,82)(14,67)(15,80)(16,65)(17,78)(18,63)(19,76)(20,61)(21,74)(22,59)(23,72)(24,57)(25,70)(26,83)(27,68)(28,81)(29,109)(30,94)(31,107)(32,92)(33,105)(34,90)(35,103)(36,88)(37,101)(38,86)(39,99)(40,112)(41,97)(42,110)(43,95)(44,108)(45,93)(46,106)(47,91)(48,104)(49,89)(50,102)(51,87)(52,100)(53,85)(54,98)(55,111)(56,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71), (1,104,8,97,15,90,22,111)(2,103,9,96,16,89,23,110)(3,102,10,95,17,88,24,109)(4,101,11,94,18,87,25,108)(5,100,12,93,19,86,26,107)(6,99,13,92,20,85,27,106)(7,98,14,91,21,112,28,105)(29,71,36,64,43,57,50,78)(30,70,37,63,44,84,51,77)(31,69,38,62,45,83,52,76)(32,68,39,61,46,82,53,75)(33,67,40,60,47,81,54,74)(34,66,41,59,48,80,55,73)(35,65,42,58,49,79,56,72), (1,66)(2,79)(3,64)(4,77)(5,62)(6,75)(7,60)(8,73)(9,58)(10,71)(11,84)(12,69)(13,82)(14,67)(15,80)(16,65)(17,78)(18,63)(19,76)(20,61)(21,74)(22,59)(23,72)(24,57)(25,70)(26,83)(27,68)(28,81)(29,109)(30,94)(31,107)(32,92)(33,105)(34,90)(35,103)(36,88)(37,101)(38,86)(39,99)(40,112)(41,97)(42,110)(43,95)(44,108)(45,93)(46,106)(47,91)(48,104)(49,89)(50,102)(51,87)(52,100)(53,85)(54,98)(55,111)(56,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,103),(2,102),(3,101),(4,100),(5,99),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,89),(16,88),(17,87),(18,86),(19,85),(20,112),(21,111),(22,110),(23,109),(24,108),(25,107),(26,106),(27,105),(28,104),(29,70),(30,69),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,62),(38,61),(39,60),(40,59),(41,58),(42,57),(43,84),(44,83),(45,82),(46,81),(47,80),(48,79),(49,78),(50,77),(51,76),(52,75),(53,74),(54,73),(55,72),(56,71)], [(1,104,8,97,15,90,22,111),(2,103,9,96,16,89,23,110),(3,102,10,95,17,88,24,109),(4,101,11,94,18,87,25,108),(5,100,12,93,19,86,26,107),(6,99,13,92,20,85,27,106),(7,98,14,91,21,112,28,105),(29,71,36,64,43,57,50,78),(30,70,37,63,44,84,51,77),(31,69,38,62,45,83,52,76),(32,68,39,61,46,82,53,75),(33,67,40,60,47,81,54,74),(34,66,41,59,48,80,55,73),(35,65,42,58,49,79,56,72)], [(1,66),(2,79),(3,64),(4,77),(5,62),(6,75),(7,60),(8,73),(9,58),(10,71),(11,84),(12,69),(13,82),(14,67),(15,80),(16,65),(17,78),(18,63),(19,76),(20,61),(21,74),(22,59),(23,72),(24,57),(25,70),(26,83),(27,68),(28,81),(29,109),(30,94),(31,107),(32,92),(33,105),(34,90),(35,103),(36,88),(37,101),(38,86),(39,99),(40,112),(41,97),(42,110),(43,95),(44,108),(45,93),(46,106),(47,91),(48,104),(49,89),(50,102),(51,87),(52,100),(53,85),(54,98),(55,111),(56,96)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B14A···14I28A···28R28S···28AD
order122224444444447778814···1428···2828···28
size11228282244448282822256562···24···48···8

58 irreducible representations

dim1111112222222444
type++++++++++++-+
imageC1C2C2C2C2C2D4D4D4D7D14D14C7:D4D4.10D4D4xD7D28.15D4
kernelD28.15D4Dic14:C4C28.10D4C28.C23C7xC4:Q8Q8.10D14Dic14D28C2xC28C4:Q8C42C2xQ8C2xC4C7C4C1
# reps121211222336122612

Matrix representation of D28.15D4 in GL4(F113) generated by

64202177
65493083
0022105
006091
,
7095671
003155
69678429
70284172
,
19386790
005096
5475162
1147043
,
1081092491
00252
76839104
841124109
G:=sub<GL(4,GF(113))| [64,65,0,0,20,49,0,0,21,30,22,60,77,83,105,91],[70,0,69,70,95,0,67,28,6,31,84,41,71,55,29,72],[19,0,54,1,38,0,7,14,67,50,51,70,90,96,62,43],[108,0,76,84,109,0,83,112,24,2,9,4,91,52,104,109] >;

D28.15D4 in GAP, Magma, Sage, TeX

D_{28}._{15}D_4
% in TeX

G:=Group("D28.15D4");
// GroupNames label

G:=SmallGroup(448,629);
// by ID

G=gap.SmallGroup(448,629);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,184,1123,570,297,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=d^2=1,c^4=a^14,b*a*b=c*a*c^-1=a^-1,d*a*d=a^13,c*b*c^-1=a^19*b,d*b*d=a^26*b,d*c*d=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<