metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D28:5D4, C42:6D14, Dic14:5D4, (C2xD4):2D14, C4:1D4:4D7, C4.55(D4xD7), C7:3(D4:4D4), C28.35(C2xD4), D4:6D14:4C2, (C4xC28):14C22, C28.D4:6C2, (D4xC14):2C22, Dic14:C4:13C2, C14.53C22wrC2, D4.D14:3C2, (C22xC14).23D4, C4.Dic7:7C22, (C2xC28).395C23, C4oD28.21C22, C23.11(C7:D4), C2.21(C23:D14), (C7xC4:1D4):4C2, (C2xC14).526(C2xD4), C22.33(C2xC7:D4), (C2xC4).118(C22xD7), SmallGroup(448,611)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D28:5D4
G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, dad=a15, cbc-1=a21b, dbd=a14b, dcd=c-1 >
Subgroups: 940 in 168 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, D4, Q8, C23, C23, D7, C14, C14, C42, M4(2), D8, SD16, C2xD4, C2xD4, C4oD4, Dic7, C28, C28, D14, C2xC14, C2xC14, C4.D4, C4wrC2, C4:1D4, C8:C22, 2+ 1+4, C7:C8, Dic14, C4xD7, D28, C2xDic7, C7:D4, C2xC28, C2xC28, C7xD4, C22xD7, C22xC14, C22xC14, D4:4D4, C4.Dic7, D4:D7, D4.D7, C4xC28, C4oD28, D4xD7, D4:2D7, C2xC7:D4, D4xC14, D4xC14, Dic14:C4, C28.D4, D4.D14, C7xC4:1D4, D4:6D14, D28:5D4
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C22wrC2, C7:D4, C22xD7, D4:4D4, D4xD7, C2xC7:D4, C23:D14, D28:5D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)
(29 50 43 36)(30 51 44 37)(31 52 45 38)(32 53 46 39)(33 54 47 40)(34 55 48 41)(35 56 49 42)
(1 8)(2 23)(3 10)(4 25)(5 12)(6 27)(7 14)(9 16)(11 18)(13 20)(15 22)(17 24)(19 26)(21 28)(29 50)(30 37)(31 52)(32 39)(33 54)(34 41)(35 56)(36 43)(38 45)(40 47)(42 49)(44 51)(46 53)(48 55)
G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49), (29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(29,50)(30,37)(31,52)(32,39)(33,54)(34,41)(35,56)(36,43)(38,45)(40,47)(42,49)(44,51)(46,53)(48,55)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49), (29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(29,50)(30,37)(31,52)(32,39)(33,54)(34,41)(35,56)(36,43)(38,45)(40,47)(42,49)(44,51)(46,53)(48,55) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49)], [(29,50,43,36),(30,51,44,37),(31,52,45,38),(32,53,46,39),(33,54,47,40),(34,55,48,41),(35,56,49,42)], [(1,8),(2,23),(3,10),(4,25),(5,12),(6,27),(7,14),(9,16),(11,18),(13,20),(15,22),(17,24),(19,26),(21,28),(29,50),(30,37),(31,52),(32,39),(33,54),(34,41),(35,56),(36,43),(38,45),(40,47),(42,49),(44,51),(46,53),(48,55)]])
58 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 7A | 7B | 7C | 8A | 8B | 14A | ··· | 14I | 14J | ··· | 14U | 28A | ··· | 28R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 4 | 4 | 8 | 28 | 28 | 2 | 2 | 4 | 4 | 28 | 28 | 2 | 2 | 2 | 56 | 56 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 |
58 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D7 | D14 | D14 | C7:D4 | D4:4D4 | D4xD7 | D28:5D4 |
kernel | D28:5D4 | Dic14:C4 | C28.D4 | D4.D14 | C7xC4:1D4 | D4:6D14 | Dic14 | D28 | C22xC14 | C4:1D4 | C42 | C2xD4 | C23 | C7 | C4 | C1 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 12 | 2 | 6 | 12 |
Matrix representation of D28:5D4 ►in GL4(F113) generated by
0 | 16 | 0 | 0 |
97 | 0 | 0 | 0 |
0 | 0 | 0 | 106 |
0 | 0 | 7 | 0 |
0 | 0 | 7 | 0 |
0 | 0 | 0 | 106 |
97 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 112 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(113))| [0,97,0,0,16,0,0,0,0,0,0,7,0,0,106,0],[0,0,97,0,0,0,0,16,7,0,0,0,0,106,0,0],[1,0,0,0,0,1,0,0,0,0,0,112,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
D28:5D4 in GAP, Magma, Sage, TeX
D_{28}\rtimes_5D_4
% in TeX
G:=Group("D28:5D4");
// GroupNames label
G:=SmallGroup(448,611);
// by ID
G=gap.SmallGroup(448,611);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,1123,570,297,136,1684,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^15,c*b*c^-1=a^21*b,d*b*d=a^14*b,d*c*d=c^-1>;
// generators/relations